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Here we consider the noise sources that affect the interferometer sensitivity. For this
handout, I have taken portions of text from [3, 4, 5].

Noise is extremely relevant in gravitational wave interferometers. To see why, con-
sider a detector like Virgo, with an arm length of 3 km: it responds to a gravitational
wave with an amplitude of 10−21 with an arm length difference

δLGW ∼ hL ∼ 3× 10−18m, (1)

which means that we have to control mechanical random noise at least at this level.

As we have already seen, we can increase the signal amplitude by a factor F/π by
using a Fabry-Perot (FP) resonator, at least for gravitational waves with a frequency less
than the FSR of the FP resonator, and this increase in amplitude helps in increasing
the Signal-to-Noise–Ratio (SNR, the ratio between signal amplitude and RMS noise
amplitude).

The detector noise level is characterized by the spectral sensitivity, see figure 1 which
shows the sensitivity curves of the three interferometers of the LVC network near the
end of the O3 observing run (March 2020).

1 Basic description of the main noise sources

This section lists the main categories of noise that affect the interferometers. They do
not include more common noise source like electronic noise that must also be kept in
check.

Ground vibrations. External mechanical vibrations must be screened out. These are
a serious problem for interferometers, because interferometers bounce light back
and forth between the mirrors, and so each reflection introduces further vibra-
tional noise. Suspension/isolation systems are based on pendulums. A
pendulum is a good mechanical filter for frequencies above its natural
frequency. By hanging the mirrors on pendulums of about 0.5 m length, one
achieves filtering above a few Hertz. Since the spectrum of ground noise falls at
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Figure 1: This plot represents the median noise of each interferometer measured over
the course of the day, during the final month of the O3 observing run, on March 1st,
2020. The measured output of each interferometer, calibrated to units of gravitational
wave strain, is shown as a function of frequency. Since the amplitude of a gravitational
wave signal changes with frequency, the shape of this curve determines each detector’s
sensitivity to incoming gravitational waves. This plot is often referred to as the “noise
curve”. (Plot from the Gravitational Wave Open Science Center summary status page,
https://www.gw-openscience.org/detector_status/day/20200301/)

higher frequencies, this provides suitable isolation. These systems can be very so-
phisticated. The most ambitious multi-stage isolation system has been developed
for the Virgo detector.

Thermal noise. Vibrations of the mirrors and of the suspending pendulum can mask
gravitational waves. As with vibrational noise, this is increased by the bouncing of
the light between the mirrors. In the gravitational interferometers, the pendulum
suspensions have thermal noise at a few Hertz, so measurements are made above
10 Hz. Internal vibrations of the mirrors have natural frequencies of several kHz,
which sets an effective upper limit to the observing band. By ensuring that both
kinds of oscillations have very high Q, one can confine most of the vibration energy
to a small bandwidth around the resonant frequency, so that at the measurement
frequencies the vibration amplitudes are extremely small. This allows interferom-
eters to operate at room temperature. But mechanical Qs of 107 or higher are
required, and this is technically demanding.

Thermal effects produce other disturbances besides vibration. Some of the mirrors
in interferometers are partly transmissive, as is the beam splitter. A small amount
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of light power is absorbed during transmission, which raises the temperature of the
mirror and changes its index of refraction. The resulting “thermal lensing” can
ruin the optical properties of the system, and random fluctuations in lensing caused
by time-dependent thermal fluctuations (thermo-refractive noise) can appear at
measurement frequencies. These effects can limit the amount of laser power that
can be used in the detector. Other problems can arise from heating effects in the
multiple-layer coatings that are applied to the reflective surfaces of mirrors.

Shot noise. The photons that are used to do interferometry are quantized, and so they
arrive at random and make random fluctuations in the light intensity that can look
like a gravitational wave signal. At this initial level, we note that

1. The more photons one uses, the smoother the interference signal will be. As
a random process, the error improves with the square root of the number N
of photons. Using light with a wavelength λ, one can expect to measure to
an accuracy of

δLshot ∼ λ/(2π
√
N) (2)

(usually infrared light with λ ∼ 1µm is actually used).

2. To measure at a frequency f , one has to make at least 2f measurements per
second, so one can accumulate photons for a time 1/2f (the sampling time).
With light power P , one gets

N = P/(hc/λ)/(2f) (3)

photons.

3. In order that δLshot should be below 10−18m, one needs high laser power.
Power-recycling techniques overcome this problem, by using light efficiently.
An interferometer actually has two places where light leaves. One is where
the interference is measured, the antisymmetric port. The other is the sum
of the two return beams on the beam splitter, which goes back towards the
input laser (the symmetric port). Normally one makes sure that no light hits
the interference sensor, so that only when a gravitational wave passes does a
signal register there. This means that all the light normally returns toward
the laser input, apart from small losses at the mirrors. By placing a power-
recycling mirror in front of the laser, one can reflect this wasted light back in,
allowing power to build up in the arms until the laser merely resupplies the
mirror losses. This can dramatically reduce the power requirement for the
laser. Current interferometers work with laser powers > 30W.

Quantum noise. Shot noise is a quantum noise, and like all quantum noises there is
a corresponding conjugate noise. As laser power is increased to reduce shot noise,
the position sensing accuracy improves, and one eventually comes up against the
Heisenberg uncertainty principle: the fluctuations of the momentum transferred to
the mirror by the measurement leads to a disturbance that can mask a gravitational
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wave (see Fig. 2). Thus, the uncertainty principle defines the Standard
Quantum Limit (SQL) to gravitational wave measurements. However the
SQL can be beaten! To reduce the backaction pressure fluctuation, the quantum
state of the light can be modified by “squeezing” the Heisenberg uncertainty ellipse,
in order to reduce the effect of this uncertainty on the variable being measured, at
the expense of its (unmeasured) conjugate. The key point here is that we are
using a quantum field (light) to measure an effectively classical quantity
(gravitational wave amplitude), so we do not need to know everything
about our quantum system: we just need to reduce the uncertainty in
that part of the quantum field that responds to the gravitational wave
at the readout of our interferometer. Squeezing is currently implemented in
both LIGO interferometers and in Virgo.

Figure 2: Pictorial representation of shot noise and radiation pressure noise.

The noise listed above are just the most important components of the overall noise
budget which is schematically illustrated in figure 3
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Fig. 11.1 Noise budget of the advanced LIGO broadband configuration as described in Abbott et al.
[5]. The coloured lines (1–8) represent the amplitude spectral density of various noise components,
whereas the trace labelled “Total Noise” shows the overall instrument sensitivity. For all frequencies
above about 12 Hz quantum noise is the dominating noise source (This figure was produced using
the GWINC software [6])

1. You need to make sure your test masses are quieter than the signal you
want to observe.

2. You need to make sure that the test mass position can be read out to the
required accuracy, without introducing any significant level of back action
noise.

In order to satisfy the first of the requirements stated above we employ a myr-
iad of sophisticated techniques and we exercise the greatest care when it comes to
providing seismic isolation of the test masses, put them into ultra-high vacuum to
reduce their acoustic coupling, and use ultra-low loss materials for the test masses
as well as for their suspensions to reduce the influence of thermal noise. The second
design principle relates fundamentally the optical readout and the interferometric
measurement of the differential arm length degree of freedom of the GW detector.

Figure 3: Noise budget of the advanced LIGO broadband configuration as described
in R.Abbott et al., AdvLIGO Interferometer Sensing and Control Conceptual Design,
Technical note LIGO-T070247-01-I (2008)
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2 Noise modeling: thermal noise

The noises described in the previous section can be modeled, and their mechanisms can
be manipulated to mitigate them. Here, I illustrate the kind of modeling that can be
done in the case of thermal noise, which brings us close to another facet of Einstein’s
research, that on stochastic processes [1] (see figure 4).

Figure 4: The starting lines of Einstein’s 1905 paper on Brownian motion [1].

Three years after Einstein’s paper, Paul Langevin devised a very different description
of Brownian motion [2], in the guise of a stochastic differential equation in the time
domain, the one-dimensional Langevin equation (see figure 5)

m
dv

dt
= −γv(t) + n(t) (4)

where γ is the friction coefficient and n is a zero-mean, Gaussian, white noise process
with correlation function ⟨n(t′)n(t′′)⟩ = σ2δ(t′−t′′). This stochastic differential equation
can be solved by taking first the ensemble average

m
d⟨v⟩
dt

= −γ⟨v⟩ (5)

which can be solved to find the average speed

⟨v(t)⟩v0 = v0 exp

(
−γt

m

)
. (6)

Next, we multiply by x(t) and take the ensemble average again〈
x
dv

dt

〉
= − γ

m
⟨xv⟩ (7)
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Figure 5: The starting lines of Langevin’s 1908 paper [2].

and we note that

xv =
1

2

dx2

dt
, (8)

and

x
dv

dt
=

d

dt
(xv)−

(
dx

dt

)2

=
1

2

d2x2

dt2
− v2, (9)

so that eq. (7) becomes

1

2

〈
d2x2

dt2

〉
− ⟨v2⟩ = − γ

2m

〈
dx2

dt

〉
. (10)

We simplify the last equation using the equipartition theorem

1

2
m⟨v2⟩ = 1

2
kBT (11)

and we find 〈
d2x2

dt2

〉
+

γ

m

〈
dx2

dt

〉
=

2kBT

m
, (12)

which we simplify using an integrating factor

d

dt

(
eγt/m

d⟨x2⟩
dt

)
= eγt/m

2kBT

m
, (13)
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and finally we integrate with the initial conditions x(0) = 0, and v(0) = v0, which imply

0 = ⟨xẋ⟩|t=0 =
1

2

d⟨x2⟩
dt

∣∣∣∣
t=0

= 0

so that
d⟨x2⟩
dt

=
2kBT

γ

(
1− e−γt/m

)
(14)

and

⟨x2⟩ = 2kBT

γ

(
t+

m

γ
e−γt/m − m

γ

)
(15)

which for long times becomes

⟨x2⟩ ≈ 2kBT

γ
t (16)

Now, let’s go back to the Langevin equation (4) and integrate it formally using the
same integrating factor

e−γt/m d

dt

(
eγt/mv(t)

)
=

n(t)

m
(17)

i.e.,

v(t) = v(0)e−γt/m +
1

m

∫ t

0
e−γ(t−t′)/m n(t′)dt′. (18)

Then, squaring and averaging, and finally taking the limit for large t,

⟨v2(t)⟩ = v2(0)e−2γt/m +
1

m2

∫ t

0
e−γ(t−t′)/me−γ(t−t′′)/m⟨n(t′)n(t′′)⟩dt′dt′′

= v2(0)e−2γt/m +
σ2

m2

∫ t

0
e−2γ(t−t′)/mdt′ = v2(0)e−2γt/m +

σ2

2γm
(1− e−2γt/m)

→ σ2

2γm
(19)

and using again the equipartition theorem,

⟨v2⟩ = kBT

m
=

σ2

2γm
(20)

we find
σ2 = 2γkBT . (21)
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From the Wiener-Kintchine theorem, we know that the power spectral density1 is
the Fourier transform of the correlation function, i.e.,

Sn(ω) =

∫ +∞

−∞
⟨n(t)n(t+ τ)⟩e−iωτdτ =

∫ +∞

−∞
σ2δ(τ)e−iωτdτ = σ2. (23)

The last result means that the one-sided spectral density of the noise process is
independent of frequency (n is a white noise) and is equal to

Sn(ω) = 4kBTγ. (24)

Now consider a thermally excited damped harmonic oscillator described by the equa-
tion

mẍ− γẋ+ kx = n(t) (25)

then the previous results imply that the power spectral density of x is

Sx(ω) =
Sn(ω)

(k −mω2)2 + γ2ω2
(26)

A sample power spectral density is shown in figure 2 (figure taken from [5]).

The latest result is an example of fluctuation-dissipation theorem, so called because
it relates fluctuations (described by the power spectral density) with dissipation in the
system (expressed by the friction coefficient).

On this basis, many thermal noise sources inside the interferometers have been stud-
ied and characterized.

1Recall that the power spectral density of a signal s(t) is defined by the following formula

S(ω) = lim
T→∞

1

T

∣∣∣∣∣
∫ +T/2

−T/2

s(t)e−iωtdt

∣∣∣∣∣
2

(22)
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3 Shot noise

Let Nγ be the average number of photons with energy ℏωγ that reach the detector
from the laser source during time T . Then, the average power measured during this
observation time is

P =
1

T
Nγℏωγ (27)

It is fair to assume that the actual number of photons is a Poisson variate with vari-
ance equal to the average Nγ , so that the standard deviation is ∆Nγ =

√
Nγ . The

corresponding fluctuation of the measured power is

∆Pshot =
1

T

√
Nγℏωγ =

(
ℏωγ

T
P

)1/2

(28)

Now, we want to assess the effect of this noise on GW measurements by comparing it
with the power received by the photodiode when a GW signal is present.

In our analysis of GW interferometers, we found that a Michelson interferometer
with Fabry-Perot arms has signal at the modulation frequency that carries information
on GW amplitude

Pout(Ω) = Pin

[
16J0(β)J1(β) sin

(
Ω

c
δℓ

)
Fac

L

λ

(
1− Fac

π
ϵ

)
h cos(Ωt+ 2Ωℓ/c)

]
, (29)

i.e., a signal with amplitude

∆Pout = Pin

∣∣∣∣16J0(β)J1(β) sin(Ω

c
δℓ

)
Fac

L

λ

(
1− Fac

π
ϵ

)
h

∣∣∣∣ , (30)

and that DC power is also present

PDC ≈ PinJ
2
1 (β). (31)

The DC term is associated with the average shot noise fluctuation

∆Pshot =

(
ℏω
T

Pin

)1/2

|J1(β)| (32)

and therefore the power signal-to-noise ratio (power SNR) is

S

N
=

∆Pout

∆Pshot
=

(
TPin

ℏω

)1/2 16L

λ
sin

(
Ω

c
δℓ

)
Fac

L

λ

(
1− Fac

π
ϵ

)
h (33)

In general, we notice that the higher the power, the larger the SNR: powerful lasers
reduce the impact of shot noise!
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