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In this handout we derive the formula for the antenna patterns of a Michelson-
type gravitational-wave detector. After a general introduction, we obtain the three-term
formula, using an argument adapted from B. Schutz [3]. We carry out all calculations
in detail and finally we obtain the general formula for the antenna patterns in the low—
frequency approximation.

1 Introduction

The antenna patterns define the sensitivity of a gravitational wave antenna to incoming
gravitational waves. It is useful to recall the similar situation for electromagnetic waves.
In the case of a simple dipole antenna, where electrons are accelerated by incoming EM
waves along the axis of the antenna, it is easy to show that the intensity (power per unit
area per unit time) is given by the norm of the Poynting vector
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where a is the norm of the acceleration, which is directed along the z axis. This intensity
can be represented as in figure [I| which shows the electromagnetic radiation pattern of
a dipole antenna.

2 The three-term formula

We consider a pulse of light traveling between a freely-falling light source and a freely-
falling mirror. The segment joining the two objects defines the z-axis, while a GW
source lies on the z-axis. The generic null line interval is

ds® = 2dt* — [1 + hy(t — z/c)]da® — [1 — hy(t — z/c)]|dy? — dz* = 0, (2)
and since the light pulse moves only along the x-axis

ds® = c2dt* — [1 + hy(t — z/c)]dz* = 0. (3)
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Figure 1: Electromagnetic radiation diagram, the antenna pattern of a simple dipole
antenna. The antenna points in the z direction, and this is also the direction of the
acceleration vector of the electrons in the metal wire. Upper panel: cross—section of the
antenna pattern along the xz plane, the gray arrow represents a specific direction and
the red segment is proportional to the intensity in that direction. Lower panel: radiation
diagram in a 3D representation.

Next, we note that there is no spatial phase change in the interferometer plane because
z = constant (which we neglect) and we find

Adt? = [1 + hy (t))d2?, (4)
and therefore
dt = %\/de ~ % [1 + %th(t)] dz. (5)
We separate variables as follows
cdt
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and integrate over the whole length L, of the segment joining source and mirror

L, = c/: (1 - ;h+(t)) dt = c(t — to) — ;/tl hy (t)dt, (7)

to

therefore
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where the last approximation holds because the integral is already of order hi. In the
last step, we also switched to x as integration variable. Then, taking into account the
backward path from mirror to source, we evaluate the return time to
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Taking the derivative with respect to the start time ty, we find

dt2—1+1/LIh’ (t —i—a:/c)dx—l—l/Lzh’ (to+ Ly/c+ x/c)dx (10)
dto_ 2c 0 +170 2c 0 +170 v

= 1t g [rlto + La/e) — )] + 5 [ (to + 2Laf) — hi(to + Lafe)] (1)
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The last result holds for a plane gravitational wave with a wave vector parallel to the
z-axis. Notice also that the intermediate value depending on ¢y, + L, /c cancels
out.

Next, we generalize this result to a rotated system, where the gravitational wave
impinges on the source—mirror system with an angle 6 with respect to the z-axis, as in
figure The rotation of a covariant vector about the y-axis is represented by the
(space) rotation matrix

' cosf 0 sind
Rl = 0 1 0 (13)
—sinf 0 cos#

therefore the space part of the strain of a 4+ polarized GW (remember that we are using
the TT gauge!)

he 0 0
hij=|0 —hy 0 (14)
0 0 0
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Figure 2: Reference frame for the treatment of an incoming gravitational wave with
angle 6 with respect to the z-axis. The left panel shows a perspective view. The right
panel shows a view along the y-axis: the reference frame is rotated about y with respect
to that with direction of the wave along the z-axis. In the xz plane, the wave vector of
the gravitational wave is antiparallel to the unit vector (sin#,cosf) and wavefronts of
constant phase are identified by the equation x sin # + z cos § = const.

transforms to

rot m PN
hij =R; Rj honn, (15)

in particular, the strain along the z-axis transforms to
hI% = R™R™hynp = hy cos? 6. (16)
In the rotated frame the wavefronts of constant phase are identified by the equation
xsinf + z cosf = const (17)

(see Fig. , therefore the spatial part of the phase change measured along the z axis (i.e.,
at z = 0) is just xsinf/c so that the total contribution to phase change is z(1 +sinf)/c
where the x term corresponds to the time phase change translated into space coordinate
and the —sin# term corresponds to the actual space contribution, with a — sign that
corresponds to the forward path. Taking into account both changes, we modify eq.

as follows
L, cos’6
tih=to+—+
c 2c

L,
/0 hylto + 2(1 — sin0) /dz (18)

The return leg is similar, with the difference that the spatial phase must be counted
backwards —(L, — x)sinf/c, and we find

2L, cos?6

to =t
2 0+c+20

Ly
/0 hylto + x(1 — sinf)/cldx

cos2 6
2c

/Lw hoilto + Lo(1 — sin) /e + x(1 + sin)/cdz  (19)
0



Taking once again the derivative with respect to the start time g, we find

dt 29 [La
de — 14 COZSC/ 1, [to + x(1 — sin 0) /c]da
0
cos?f (L=, . .
5 h. [to+ Lz (1 —sin®)/c+ x(1 + sinf)/c|dx (20)
¢ Jo

2 1—sinf
+h+[t0 + Ly(1 —sinf)/c+ Ly(1+sinf)/c] — hyfto + Ly(1 —sinf)/c] (21)
1+sinf

14 cos? 0 {h+[t0 + L,(1 —sinf)/c] — hy(to)

14 % (1 + sin 0)h [to + Lo (1 — sin ) /] — (1 + sin 0)h (to)
+(1 —sin@)hy[to + 2Ly /c] — (1 — sin@)hy[to + Ly (1 —sinf)/c|} (22)

=1+ % {(1 —sinf) hy {to + 2111 — (1 +sinf) hq(to) +2siné hy |to + &(1 - sin@)}}
c c
(23)

the last line is the three-term formula.

3 The antenna patterns

First, we expand the three-term formula for small L., i.e., assuming that L, < Agw
(the arm length is much smaller than the wavelength of the gravitational wave)

dty _ 1+ 1 {(1 —sin®) hy [to + 2L1 — (1 +sinf) hy(ty) +2sin6 hy [to + &(1 - sin@)} }
dtg 2 c c
(24)
~1+ 3 {(1 —sin6) {th(to) + ; h+(to)} — (1 +sinf) hy(to)
+2sin 6 [h+(to) + (1 —sine)Lc‘”m(to)” (25)
L, 9 1;
=14 — cos“ Oh4(to) (26)
c

and we note that the scalar expression contains h (ty) which comes from a rank 2
tensoxﬂ The only available tensor objects are the derivative of the gravitational wave

!The expression is similar to the one quoted in [2], with the substitution sin — cos. The reason is
that the angle in [2] has an additional 90° rotation.



tensor hm and the unit vector that specifies the direction of motion of the light pulses
(the z axis). This means that the scalar must have the following form in terms of tensor
quantities

dtsy

— =1 —h
dto +

X—arm

(27)

ijam

where €, is the unit vector in the direction of the x armEL and similarly for the y arm of
an interferometer with z and y arms

dto

L. .
—= =1+ —Yhyelel 28
Clto + Cc 6 ( )

’Ljyy?

y—arm
so that the global response of the interferometers is (with L, = L, = L)

ot _ dty
dty  dto

dta

L. ji 5
" d = Ehij (erel — eye;) (29)

X—arm y—arm

Finally, integrating the last equation, we find the differential return time

L .
(5t = Ehij (é;éjx — €y€;) (30)

Expression can be recast in the simpler form
1
ot = *hijdl'j (31)
c
where d is the detector tensor with components

dij = L (eLél — eye]y) (32)

This expression can be cast in the even more compact form
1
0t=-h:d (33)
c

if we use the shorthand notation h : d = h;;d;;.

Note that the definition of the detector tensor is similar to that of the polarization
tensors that we defined earlier

e, =élél — eyejy, e, =élél +eyegﬁ, (34)

although their two expressions are usually computed in different frames of reference.

Turning now to the differential length change, this is half the length determined
by the differential return time, and eq. becomes

5L = %h .d (35)

2Indeed, the rotated é, unit vector has the representation (cos 6,0, —sinf) in the rotated system.



Figure [3| shows the geometry of the situation we are describing. In this case the
polarization tensors in the TT frame are obtained from the vectors labeled éf, etc.,
shown in the left panel. However, this is a very special choice, where the éf vector is
parallel the z-axis of the detector frame before the rotation that brings it into the proper
sky direction. In general, the system in the TT frame is also rotated by an angle v, as
shown in the right panel of figure |3| (see also figure [4] for another view of the rotation
angles).

Detector plane Detector plane

Figure 3: The relative orientation of the sky and detector frames (left panel) and the
effect of a rotation by the angle 1 in the sky frame (right panel), from Sathyaprakash
and Schutz [2]

With this additional rotation, the polarization tensors are defined by
er=0'a) —fIH, e =alp + i, (36)

and since the effect of the rotation is

& = éff cosp + &)f sinyp (37)
B=—eBsiny + éf cos (38)

we find
€l =alal — [ (39)

= [(F) cosp + (&) sinep] [(eF) cosyp + (&f) sin /]

— [—(éf); siny + (éf)i cos | [—(éf)j siny + (éyR)j costp|  (40)
= (e (el cos 20 + (e (ef)y sin 2y + (&[1)'(eF)7 sin2p — (&7)"(e]})! cos 20 (41)
= eij cos 20 4 €' sin 20 (42)



Figure 4: A representation of the individual rotations used to obtain the expression for
the antenna patterns, from [I].

with a similar result for eixj:
€4 = €4 cos2Y + ey sin 2y (43a)
€x = —e4sin 21y + ey cos 2y (43b)

Spelling out the differential length change , we see that it is a function of the
angles 6, ¢, and v, i.e.,
oL

22 = Fi(0,6,0) hi (t) + Fe(0,6,0) hx () (44)

where the coefficients Fy and Fx are the antenna patterns of the interferometer. The
antenna patterns are obtained from the rotated basis vectors. The detailed calculations

follow:

e rotation matrix

cos¢p —sing 0 cos 0 siné cosfcos¢p —sing sinfcos¢
R=[sin¢g cos¢p 0 0 1 0 = | cosfsing cos¢ sinfsing
0 0 1 —sinf 0 cosf —sinf 0 cos 6
(45)
e representation of the rotated zy basis vectors
‘ cos 6 cos ¢ ‘ —sin ¢
[(éf)z] = | cosfsing | ; [(ég)’] = | cos¢ (46)
—sinf 0



e partial tensors

' ' cos? 6 cos? ¢ cos?fsincos¢ —sinf cosf cos ¢
[(eX)i(el)7] = | cos?Osin¢cos cos? sin? ¢ —sinfcosfsing | (47a)
—sinfcosfcos¢p —sinfcosfsing sin?
' ' sin? ¢ —singcos¢p 0
[(éf)’ (éf)]] = | —sin¢coso cos? ¢ 0 (47b)
0 0 0
' ' — cos 6 cos ¢sin ¢ cos 0 cos® ¢ 0
[(éf)z (éf)]] = —cosfsin®¢  cosfsingcosg 0 (47¢)
sin 0 sin ¢ —sinfcos¢p 0
A ' —cosfcospsing —cosfsin® ¢ sin 6 sin ¢
[(éf)z (éf)]] = cos ) cos? ¢ cosfsingcos¢p —sinfcoso (47d)
0 0 0

e polarization tensors

(7] = (BB - [y @]

cos? 6 cos? ¢ — sin? ¢ cos? fsin ¢ cos ¢ + sinpcosp — sin @ cos b cos ¢
= | cos? fsin ¢ cos ¢ + sin ¢ cos ¢ cos? 0sin? ¢ — cos? ¢ —sin 6 cosfsin ¢
—sin 6 cos 6 cos ¢ —sin 6 cosfsin ¢ sin® 6
(48)
2] = (@R + [y ey
—cosfsin2¢ cos@cos® ¢ —cosfsin® ¢ sinfsin ¢
= | cosfcos® ¢ — cosfsin’ ¢ cos 0 sin 2¢ —sin 6 cos ¢
sin # sin ¢ —sin @ cos ¢ 0
(49)
e the detector tensor
1 0 0
[d7]=L|0 -1 0 (50)
0 0 O
e detector response
oL 1 o1
T = §hijd” = §h+ (cos? 0 + 1) cos 2¢ — hy cos 0 sin 2¢ (51)



e detector response including the polarization angle in the source reference frame,

Eq.

oL 1 . 1
T = ﬁhijd” =hy [2 (0052 0+ 1) cos 2¢ cos 2¢) — cos f sin 2¢ sin 214

1
— hx [2 (0082 0 + 1) cos 2¢ sin 2¢ + cos f sin 2¢ cos Qw] (52)
e antenna patterns
1
F, = 3 (1 + cos? ) cos 2¢ cos 2¢p — cos 6 sin 2¢ sin 21) (53)
1
Fy = 5 (1 + cos? ) cos 2¢ sin 2¢) + cos 6 sin 2¢ cos 21) (54)

Figure [5| shows a graphical representation of F, and F.

e formal definition of the antenna patterns

SL 1 . 1 ij iJ\ (5% pJ st 6J
Yot )
Therefore 1
Fa= 5 (66 - é3¢)) )

where A is the polarization state 4+ or X.
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Figure 5: Antenna patterns F (left) and Fy (right).
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