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In this handout we derive the formula for the antenna patterns of a Michelson-
type gravitational-wave detector. After a general introduction, we obtain the three-term
formula, using an argument adapted from B. Schutz [3]. We carry out all calculations
in detail and finally we obtain the general formula for the antenna patterns in the low–
frequency approximation.

1 Introduction

The antenna patterns define the sensitivity of a gravitational wave antenna to incoming
gravitational waves. It is useful to recall the similar situation for electromagnetic waves.
In the case of a simple dipole antenna, where electrons are accelerated by incoming EM
waves along the axis of the antenna, it is easy to show that the intensity (power per unit
area per unit time) is given by the norm of the Poynting vector

|S(r, t)| = e2

16π2ε0c2
a2 sin2 θ

r2
(1)

where a is the norm of the acceleration, which is directed along the z axis. This intensity
can be represented as in figure 1 which shows the electromagnetic radiation pattern of
a dipole antenna.

2 The three-term formula

We consider a pulse of light traveling between a freely-falling light source and a freely-
falling mirror. The segment joining the two objects defines the x-axis, while a GW
source lies on the z-axis. The generic null line interval is

ds2 = c2dt2 − [1 + h+(t− z/c)]dx2 − [1− h+(t− z/c)]dy2 − dz2 = 0, (2)

and since the light pulse moves only along the x-axis

ds2 = c2dt2 − [1 + h+(t− z/c)]dx2 = 0. (3)
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Figure 1: Electromagnetic radiation diagram, the antenna pattern of a simple dipole
antenna. The antenna points in the z direction, and this is also the direction of the
acceleration vector of the electrons in the metal wire. Upper panel: cross–section of the
antenna pattern along the xz plane, the gray arrow represents a specific direction and
the red segment is proportional to the intensity in that direction. Lower panel: radiation
diagram in a 3D representation.

Next, we note that there is no spatial phase change in the interferometer plane because
z = constant (which we neglect) and we find

c2dt2 = [1 + h+(t)]dx
2, (4)

and therefore

dt =
1

c

√
1 + h+(t)dx ≈ 1

c

[
1 +

1

2
h+(t)

]
dx. (5)

We separate variables as follows

dx =
cdt

1 +
1

2
h+(t)

≈ cdt

(
1− 1

2
h+(t)

)
, (6)
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and integrate over the whole length Lx of the segment joining source and mirror

Lx = c

∫ t1

t0

(
1− 1

2
h+(t)

)
dt = c(t1 − t0)−

c

2

∫ t1

t0

h+(t)dt, (7)

therefore

t1 ≈ t0 +
Lx

c
+

1

2

∫ t1

t0

h+(t)dt = t0 +
Lx

c
+

1

2

∫ t0+Lx/c+O(h+)

t0

h+(t)dt

≈ t0 +
Lx

c
+

1

2c

∫ Lx

0
h+(t0 + x/c)dx, (8)

where the last approximation holds because the integral is already of order h+. In the
last step, we also switched to x as integration variable. Then, taking into account the
backward path from mirror to source, we evaluate the return time t2

t2 = t0 +
2Lx

c
+

1

2c

∫ Lx

0
h+(t0 + x/c)dx+

1

2c

∫ Lx

0
h+(t0 + Lx/c+ x/c)dx. (9)

Taking the derivative with respect to the start time t0, we find

dt2
dt0

= 1 +
1

2c

∫ Lx

0
h′+(t0 + x/c)dx+

1

2c

∫ Lx

0
h′+(t0 + Lx/c+ x/c)dx (10)

= 1 +
1

2
[h+(t0 + Lx/c)− h+(t0)] +

1

2
[h+(t0 + 2Lx/c)− h+(t0 + Lx/c)] (11)

= 1 +
1

2
[h+(t0 + 2Lx/c)− h+(t0)] (12)

The last result holds for a plane gravitational wave with a wave vector parallel to the
z-axis. Notice also that the intermediate value depending on t0 +Lx/c cancels
out.

Next, we generalize this result to a rotated system, where the gravitational wave
impinges on the source–mirror system with an angle θ with respect to the z-axis, as in
figure 2. The rotation of a covariant vector about the y-axis is represented by the
(space) rotation matrix

Rj
i =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


 (13)

therefore the space part of the strain of a + polarized GW (remember that we are using
the TT gauge!)

hij =



h+ 0 0
0 −h+ 0
0 0 0


 (14)
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Figure 2: Reference frame for the treatment of an incoming gravitational wave with
angle θ with respect to the z-axis. The left panel shows a perspective view. The right
panel shows a view along the y-axis: the reference frame is rotated about y with respect
to that with direction of the wave along the z-axis. In the xz plane, the wave vector of
the gravitational wave is antiparallel to the unit vector (sin θ, cos θ) and wavefronts of
constant phase are identified by the equation x sin θ + z cos θ = const.

transforms to
hrotij = Rm

i R
n
j hmn, (15)

in particular, the strain along the x-axis transforms to

hrotxx = Rm
x R

n
xhmn = h+ cos2 θ. (16)

In the rotated frame the wavefronts of constant phase are identified by the equation

x sin θ + z cos θ = const (17)

(see Fig. 2), therefore the spatial part of the phase change measured along the x axis (i.e.,
at z = 0) is just x sin θ/c so that the total contribution to phase change is x(1± sin θ)/c
where the x term corresponds to the time phase change translated into space coordinate
and the − sin θ term corresponds to the actual space contribution, with a − sign that
corresponds to the forward path. Taking into account both changes, we modify eq. (8)
as follows

t1 = t0 +
Lx

c
+

cos2 θ

2c

∫ Lx

0
h+[t0 + x(1− sin θ)/c]dx (18)

The return leg is similar, with the difference that the spatial phase must be counted
backwards −(Lx − x) sin θ/c, and we find

t2 = t0 +
2Lx

c
+

cos2 θ

2c

∫ Lx

0
h+[t0 + x(1− sin θ)/c]dx

+
cos2 θ

2c

∫ Lx

0
h+[t0 + Lx(1− sin θ)/c+ x(1 + sin θ)/c]dx (19)
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Taking once again the derivative with respect to the start time t0, we find

dt2
dt0

= 1 +
cos2 θ

2c

∫ Lx

0
h′+[t0 + x(1− sin θ)/c]dx

+
cos2 θ

2c

∫ Lx

0
h′+[t0 + Lx(1− sin θ)/c+ x(1 + sin θ)/c]dx (20)

= 1 +
cos2 θ

2

{
h+[t0 + Lx(1− sin θ)/c]− h+(t0)

1− sin θ

+
h+[t0 + Lx(1− sin θ)/c+ Lx(1 + sin θ)/c]− h+[t0 + Lx(1− sin θ)/c]

1 + sin θ

}
(21)

= 1 +
1

2
{(1 + sin θ)h+[t0 + Lx(1− sin θ)/c]− (1 + sin θ)h+(t0)

+(1− sin θ)h+[t0 + 2Lx/c]− (1− sin θ)h+[t0 + Lx(1− sin θ)/c]} (22)

= 1 +
1

2

{
(1− sin θ) h+

[
t0 + 2

Lx

c

]
− (1 + sin θ) h+(t0) + 2 sin θ h+

[
t0 +

Lx

c
(1− sin θ)

]}

(23)

the last line (23) is the three-term formula.

3 The antenna patterns

First, we expand the three-term formula for small Lx, i.e., assuming that Lx ≪ λGW

(the arm length is much smaller than the wavelength of the gravitational wave)

dt2
dt0

= 1 +
1

2

{
(1− sin θ) h+

[
t0 + 2

Lx

c

]
− (1 + sin θ) h+(t0) + 2 sin θ h+

[
t0 +

Lx

c
(1− sin θ)

]}

(24)

≈ 1 +
1

2

{
(1− sin θ)

[
h+(t0) +

2Lx

c
ḣ+(t0)

]
− (1 + sin θ) h+(t0)

+2 sin θ

[
h+(t0) + (1− sin θ)

Lx

c
ḣ+(t0)

]}
(25)

= 1 +
Lx

c
cos2 θḣ+(t0) (26)

and we note that the scalar expression contains ḣ+(t0) which comes from a rank 2
tensor1. The only available tensor objects are the derivative of the gravitational wave

1The expression is similar to the one quoted in [2], with the substitution sin → cos. The reason is
that the angle in [2] has an additional 90◦ rotation.
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tensor ḣij and the unit vector that specifies the direction of motion of the light pulses
(the x axis). This means that the scalar must have the following form in terms of tensor
quantities

dt2
dt0

∣∣∣∣
x−arm

= 1 +
Lx

c
ḣij ê

i
xê

j
x, (27)

where êx is the unit vector in the direction of the x arm2, and similarly for the y arm of
an interferometer with x and y arms

dt2
dt0

∣∣∣∣
y−arm

= 1 +
Ly

c
ḣij ê

i
y ê

j
y, (28)

so that the global response of the interferometers is (with Lx = Lx = L)

dδt

dt0
=
dt2
dt0

∣∣∣∣
x−arm

− dt2
dt0

∣∣∣∣
y−arm

=
L

c
ḣij

(
êixê

j
x − êiy ê

j
y

)
(29)

Finally, integrating the last equation, we find the differential return time

δt =
L

c
hij

(
êixê

j
x − êiy ê

j
y

)
(30)

Expression (30) can be recast in the simpler form

δt =
1

c
hijdij (31)

where d is the detector tensor with components

dij = L
(
êixê

j
x − êiy ê

j
y

)
. (32)

This expression can be cast in the even more compact form

δt =
1

c
h : d (33)

if we use the shorthand notation h : d ≡ hijdij .

Note that the definition of the detector tensor is similar to that of the polarization
tensors that we defined earlier

e+ = êixê
j
x − êiy ê

j
y, e× = êixê

j
y + êiy ê

j
x, (34)

although their two expressions are usually computed in different frames of reference.

Turning now to the differential length change, this is half the length determined
by the differential return time, and eq. (33) becomes

δL =
1

2
h : d (35)

2Indeed, the rotated êx unit vector has the representation (cos θ, 0,− sin θ) in the rotated system.
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Figure 3 shows the geometry of the situation we are describing. In this case the
polarization tensors in the TT frame are obtained from the vectors labeled êRx , etc.,
shown in the left panel. However, this is a very special choice, where the êRx vector is
parallel the x-axis of the detector frame before the rotation that brings it into the proper
sky direction. In general, the system in the TT frame is also rotated by an angle ψ, as
shown in the right panel of figure 3 (see also figure 4 for another view of the rotation
angles).

34 B.S. Sathyaprakash and Bernard F. Schutz

Figure 3 shows the general situation, where the basis vectors ↵̂ and �̂ are rotated by an angle  
from the basis used in the left-hand panel. The polarization tensors on this new basis,

✏+ = (↵̂⌦ ↵̂� �̂ ⌦ �̂), ✏⇥ = (↵̂⌦ �̂ + �̂ ⌦ ↵̂), (53)

are found by the following transformation from the previous ones:

✏+ = e+ cos 2 + e⇥ sin 2 ,

✏⇥ = �e+ sin 2 + e⇥ cos 2 . (54)

Then one can write Equation (51) as

�L(t)

L
= F+(✓, �,  )h+(t) + F⇥(✓, �,  )h⇥(t), (55)

where F+ and F⇥ are the antenna pattern functions for the two polarizations defined on the
sky-plane basis by

F+ ⌘ d : e+, F⇥ ⌘ d : e⇥. (56)

Using the geometry in the right-hand panel of Figure 3, one can show that

F+ =
1

2

�
1 + cos2 ✓

�
cos 2� cos 2 � cos ✓ sin 2� sin 2 ,

F⇥ =
1

2

�
1 + cos2 ✓

�
cos 2� sin 2 + cos ✓ sin 2� cos 2 . (57)

Figure 3: The relative orientation of the sky and detector frames (left panel) and the e↵ect of a rotation
by the angle  in the sky frame (left panel).

These are the antenna-pattern response functions of the interferometer to the two polarizations
of the wave as defined in the sky plane [359]. If one wants the antenna pattern referred to the

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-2

Figure 3: The relative orientation of the sky and detector frames (left panel) and the
effect of a rotation by the angle ψ in the sky frame (right panel), from Sathyaprakash
and Schutz [2]

With this additional rotation, the polarization tensors are defined by

ϵ+ = α̂iα̂j − β̂iβ̂j , ϵ× = α̂iβ̂j + β̂iα̂j , (36)

and since the effect of the rotation is

α̂ = êRx cosψ + êRy sinψ (37)

β̂ = −êRx sinψ + êRy cosψ (38)

we find

ϵij+ = α̂iα̂j − β̂iβ̂j (39)

=
[
(êRx )

i cosψ + (êRy )
i sinψ

] [
(êRx )

j cosψ + (êRy )
j sinψ

]

−
[
−(êRx )

i
x sinψ + (êRy )

i cosψ
] [
−(êRx )

j sinψ + (êRy )
j cosψ

]
(40)

= (êRx )
i(êRx )

j cos 2ψ + (êRx )
i(êRy )

j sin 2ψ + (êRy )
i(êRx )

j sin 2ψ − (êRy )
i(êRy )

j cos 2ψ (41)

= eij+ cos 2ψ + eij× sin 2ψ (42)
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Gravitational Wave Polarization and the Antenna Pattern
Tobin Fricke, Max Planck Institute for Gravitational Physics (Albert Einstein Institute) LIGO-G1400227  2014-03-14

Figure by Jeff Kissel; appears in Abadie et al 2010, "Calibration of the LIGO gravitational
wave detectors in the fifth science run," http://dx.doi.org/10.1016/j.nima.2010.07.089 .

Main points of this poster

It is tempting (and sometimes useful) to define "the" plus and cross 
polarizations over the entire sky, and to separate the antenna pattern into 
plus and cross components.  However, there are both technical and 
pedagogical problems with this approach:

(1) it is not possible to define plus and cross polarizations in a consistent 
way over the entire sky.  Ultimately this results from the "hairy ball 
theorem" which says that there is no smooth non-zero vector field over the 
sphere.

(2a) The most commonly depicted decomposition (using the "wave frame") 
has its coordinate singularities at the poles.  The resulting antenna pattern 
is invalid for waves coming from directly above or below the detector.  
These directions should be the most intuitive.

(2b) In particular, this choice of polarization basis does not agree with the 
experimentalist's view that the "plus" polarization is the one that optimally 
excites the differential arm motion of the Michelson interferometer.

Gravitational waves
Gravitational waves are a propagating disturbance in the metric tensor.  The effect of a passing 
gravitational wave is to periodically stretch and compress space in the two directions orthogonal to 
the direction of propagation.

This disturbance can be quantified as a strain of space.  The expected strain at Earth due to 
astrophysical events is extremely small, making detection very challenging.

×+

Polarization and the antenna pattern

↻

Red dots indicate 
configurations of non-
interacting inertial test 
masses.

Like electromagnetic waves, gravitational 
waves have two polarizations.  The two linear 
polarizations of gravitational waves are usually 
called plus (+) and cross (×), with reference to the 
pattern of stretching and compression caused by 
the wave.

These detectors are not omnidirectional, but 
exhibit an "antenna pattern" showing directional 
variations in sensitivity.  This arises from the 
projection of the g.w. strain axes onto the 
interferometer arm axes.

laser source

Laser interferometric gravitational wave 
detectors use suspended mirrors as test-
masses to detect the stretching and 
compressing of space due to a passing 
gravitational wave.  The Fabry-Perot Michelson 
configuration is sensitive to gravitational waves 
that modulate the arm lengths differentially. 

The resulting plus and cross antenna patterns are multi-valued
at the poles (i.e. for waves coming from directly above or below the
detector).  Most of the complexity of these decomposed antenna patterns
comes not from the detector physics but from the choice of coordinate system.
These figures look cool, but they are misleading.

By contrast, the antenna pattern for "unpolarized" (or circularly polarized,
or optimally-oriented linearly polarized) waves is completely physical.   The choice
of polarization basis cancels out.  The unpolarized antenna pattern has pedagogical
value.  For instance, it shows:

• Optimally polarized waves from directly above (or below) produce twice as much
signal as waves propagating along the arms, since these waves modulate the lengths
of both arms, not just one.

• Waves arriving along the bisector between the arms produce no signal, since they
can only produce common-mode modulation (both arms equally, not differentially).

Multi-valued at
the poles!

Appears that the
detector is equally

sensitive to
both polarizations

when normally
incident.

The "wave frame" coordinate system for polarization

This coordinate system results in the following antenna patterns for the resulting plus and cross
polarizations:

x'

x
y

y'z

4 km (!)

World-wide network of gravitational wave detectors

Several g.w. detectors are currently in operation and/or under construction around the world.  
Multiple detectors are operated together as a phased array in order to recover directional 
information from incoming gravitational waves.  The Laser Interferometer Gravitational-wave 
Observatory (LIGO)'s installation in Livingston, Louisiana is pictured below.  (Aerial photograph by 
Stefan Ballmer, 2008.)  It is hoped that the next generation of g.w. detectors, currently undergoing 
initial commissioning, will make the first detection of a gravitational wave.

Unfortunately, these antenna patterns have some undesirable properties, especially in a pedagogical
context.

• Abadie et al  2010, "Calibration of the LIGO gravitational wave detectors in the
fifth science run," http://dx.doi.org/10.1016/j.nima.2010.07.089 

• Daniel Sigg 1997, "Strain Calibration in LIGO."  LIGO Technical Document T970101-B,
https://dcc.ligo.org/public/0028/T970101/000/T970101-B.pdf

References
Effect of circularly polarized 
gravitational wave on a ring 
of non-interacting test 
particles.

Figure 4: A representation of the individual rotations used to obtain the expression for
the antenna patterns, from [1].

with a similar result for ϵij×:

ϵ+ = e+ cos 2ψ + e× sin 2ψ (43a)

ϵ× = −e+ sin 2ψ + e× cos 2ψ (43b)

Spelling out the differential length change (35), we see that it is a function of the
angles θ, ϕ, and ψ, i.e.,

δL

L
= F+(θ, ϕ, ψ) h+(t) + F×(θ, ϕ, ψ) h×(t) (44)

where the coefficients F+ and F× are the antenna patterns of the interferometer. The
antenna patterns are obtained from the rotated basis vectors. The detailed calculations
follow:

• rotation matrix

R =



cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1







cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


 =



cos θ cosϕ − sinϕ sin θ cosϕ
cos θ sinϕ cosϕ sin θ sinϕ
− sin θ 0 cos θ




(45)

• representation of the rotated xy basis vectors

[
(êRx )

i
]
=



cos θ cosϕ
cos θ sinϕ
− sin θ


 ;

[
(êRy )

i
]
=



− sinϕ
cosϕ
0


 (46)
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• partial tensors

[
(êRx )

i(êRx )
j
]
=




cos2 θ cos2 ϕ cos2 θ sinϕ cosϕ − sin θ cos θ cosϕ
cos2 θ sinϕ cosϕ cos2 θ sin2 ϕ − sin θ cos θ sinϕ
− sin θ cos θ cosϕ − sin θ cos θ sinϕ sin2 θ


 (47a)

[
(êRy )

i(êRy )
j
]
=




sin2 ϕ − sinϕ cosϕ 0
− sinϕ cosϕ cos2 ϕ 0

0 0 0


 (47b)

[
(êRx )

i(êRy )
j
]
=



− cos θ cosϕ sinϕ cos θ cos2 ϕ 0
− cos θ sin2 ϕ cos θ sinϕ cosϕ 0
sin θ sinϕ − sin θ cosϕ 0


 (47c)

[
(êRy )

i(êRx )
j
]
=



− cos θ cosϕ sinϕ − cos θ sin2 ϕ sin θ sinϕ

cos θ cos2 ϕ cos θ sinϕ cosϕ − sin θ cosϕ
0 0 0


 (47d)

• polarization tensors

[
ϵij+

]
=

[
(êRx )

i(êRx )
j
]
−
[
(êRy )

i(êRy )
j
]

=




cos2 θ cos2 ϕ− sin2 ϕ cos2 θ sinϕ cosϕ+ sinϕ cosϕ − sin θ cos θ cosϕ
cos2 θ sinϕ cosϕ+ sinϕ cosϕ cos2 θ sin2 ϕ− cos2 ϕ − sin θ cos θ sinϕ

− sin θ cos θ cosϕ − sin θ cos θ sinϕ sin2 θ




(48)

[
ϵij×

]
=

[
(êRx )

i(êRy )
j
]
+
[
(êRy )

i(êRx )
j
]

=




− cos θ sin 2ϕ cos θ cos2 ϕ− cos θ sin2 ϕ sin θ sinϕ
cos θ cos2 ϕ− cos θ sin2 ϕ cos θ sin 2ϕ − sin θ cosϕ

sin θ sinϕ − sin θ cosϕ 0




(49)

• the detector tensor

[
dij

]
= L



1 0 0
0 −1 0
0 0 0


 (50)

• detector response

δL

L
=

1

2
hijd

ij =
1

2
h+

(
cos2 θ + 1

)
cos 2ϕ− h× cos θ sin 2ϕ (51)
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• detector response including the polarization angle in the source reference frame,
Eq. (43)

δL

L
=

1

2L
hijd

ij = h+

[
1

2

(
cos2 θ + 1

)
cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ

]

− h×

[
1

2

(
cos2 θ + 1

)
cos 2ϕ sin 2ψ + cos θ sin 2ϕ cos 2ψ

]
(52)

• antenna patterns

F+ =
1

2
(1 + cos2 θ) cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ (53)

F× =
1

2
(1 + cos2 θ) cos 2ϕ sin 2ψ + cos θ sin 2ϕ cos 2ψ (54)

Figure 5 shows a graphical representation of F+ and F×.

• formal definition of the antenna patterns

δL

L
=

1

2L
hijd

ij =
1

2

(
h+ϵ

ij
+ + h×ϵ

ij
×

) (
êixê

j
x − êiy ê

j
y

)
(55)

Therefore

FA =
1

2
ϵijA

(
êixê

j
x − êiy ê

j
y

)
(56)

where A is the polarization state + or ×.
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Figure 5: Antenna patterns F+ (left) and F× (right).
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