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In this handout I derive the formula for the antenna patterns of a Michelson-type
gravitational-wave detector for a pure + polarization. Initially, we derive the three-term
formula, using an argument adapted from B. Schutz [3].

The three-term formula

We consider a pulse of light traveling between a freely-falling light source and a freely-
falling mirror. The segment joining the two objects defines the z-axis, while a GW
source lies on the z-axis. The null line interval is

ds® = 2dt* — [1 + hy(t — z/c)]da® — [1 — hy(t — z/c)|dy? — dz* = 0, (1)

which means that with the light moving only along the z-axis, and neglecting the spatial
phase change (this means that the wavelength of the GW is much longer than the distance
L between source and mirror) we find

dt® = [1 4 by (t)]da?, (2)
and therefore

it = %~/1 e ()de ~ % {1 + ;h+(t)] da. (3)

We can separate variables as follows
t 1
do = # ~ cdt <1 - 2h+(t)) (4)
1+ §h+(t)

and integrate over the whole length

L, = c/t:I <1 - ;h+(t)> dt = ety — to) — ;/tl hy ()dt. (5)

Therefore
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because the integral is already of order h. Considering also the backward path from
mirror to source, the return time to is

to = tg +

2L, 1 (L= 1 L=
+ — hy(to +z/c)dx + — hi(to+ L/c+ x/c)dx. (7)
c 2¢c Jo 2¢c Jq
Taking the derivative with respect to the start time ¢y, we find

dto 1

L L
T ]_ z
iy 26/0 W (to + o c)d + 26/0 W, (to + Lajc + /c)de (8)

=1+ % [h+(t0 + Lx/c) — h.,.(to)] + % [h+(t0 + QLQ;/C) — h+(to + Lw/C)] (9)

— 14 L Bt + 2Le /) — B (f) (10)

The last result holds for a plane gravitational wave with a wave vector parallel to
the z-axis. Next, we generalize this result to a rotated system, where the gravitational
wave impinges on the source—mirror system with an angle 6 with respect to the z-axis,
as in figure [l The rotation of a covariant vector about the y-axis is represented by the
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Figure 1: Reference frame for the treatment of an incoming gravitational wave with
angle 6 with respect to the z-axis. The left panel shows a perspective view. The right
panel shows a view along the y-axis: the reference frame is rotated about y with respect
to that with direction of the wave along the z-axis.

(space) rotation matrix
‘ cosf 0 sinf
Rl = 0 1 0 (11)
—sind 0 cosf

therefore the space part of the strain of a + polarized GW (TT gauge!)

hy 0 0
hij=|0 —hy 0 (12)
0 0 0



transforms to
hiS* = R R} hynp, (13)

in particular, the strain along the z-axis transforms to
R = R™R™ i,y = hy cos? 6. (14)
In the rotated frame, the spatial part of the phase change of the gravitational wave is
(zcos@ —xsinb)/c (15)

so that the spatial phase change measured along the z axis (i.e., at z = 0) is just zsin /¢,
and we can modify eq. @ as follows

L, cos?f [Le
31 :to+?+

5 hylto+ z(1 —sin6)/c]dx (16)
¢ Jo

The return leg is similar, with the difference that the spatial phase must be counted
backwards —(L — x) sinf/c, and we find

2L, cos’f

to =1
2 o+ + 9%

L.
/0 hylto+ z(1 —sin@)/c]dx

cos? 6
2c

/Lz hilto+ Lz(1 —sin®)/c+ (1 +sinf)/cldx  (17)
0

Taking once again the derivative with respect to the start time ¢y, we find

2 L.
jﬁZzl—l—CO;cg R, [to + (1 — sin ) /c]dx
0
cos?f L=, . .
5 R [to + L(1 —sinf)/c + x(1 + sinf) /c|dx (18)
0
14 cos? @ [ hylto+ L (1 —sin®)/c] — hy(to)
2 1 —sinf
+h+[t0 + Ly(1 —sinf)/c+ Ly(1+sinf)/c] — hyfto + Lx(1 —sinf)/c] (19)
1+sinf

=1+ % {(1 +sinb)hyfto+ Ly(1 —sinf)/c] — (1 4 sin@)h4 (o)
+(1 —sin@)hy[to + 2L, /c] — (1 —sin@)hy[to + L.(1 —sinB)/c|} (20)

=1+ 5 {(1 —sinf) hy [to + 2} — (1 4sinf) hy(tg) + 2sinf hy |to+ —(1 — s1n0)} }
c c
(21)



the last line is the three-term formula.

The antenna patterns

First, we expand the three-term formula for small L,

1 L L
dta _ 14+ = {(1 —sinf) hy [to +21 — (1 +siné) hy(tg) +2sinf hy [tg+ —(1 — sine)} }
dtg 2 c c
(22)
~1+ 3 {(1 —sin6) [h+(t0) + ; h+(to)} — (1 +sinf) hy(to)
L. .
+2sin6 [h+[t0] +(1 —sinG):th(to)]} (23)
Ly o ,;
=1+ — cos*Oh,(to) (24)
c

and we note that the angular factor comes from the rotation of the coordinate system,
and that the whole expression can be written in coordinate-free form

dts
dto

1j €2

Ly: .
=1+ “Chyele] (25)

X—arm

where é, is the unit vector in the direction of the x arm, and similarly for the y arm of
an interferometer with z and y arms

dts
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% == 1 + ?yhzjel 6] (26)
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so that the global response of the interferometers is (with L, = L, = L)

_dny
dtg

= ;hij (exe]x — eyeg/) (27)

dot _ diy
dty  dto
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Finally, integrating the last equation, we find the differential return time

L Y Y
ot = zhij (efvegc — eZegl) (28)
Expression can be recast in the simpler form
1
ot = *hijdij (29)
c

if we define the detector tensor d with components

dij = L (E,e), —é,e]) . (30)



This expression can be cast in the even more compact form
1
0t=-h:d (31)
c

if we use the shorthand notation h : d = h;;d;;.
Note that the definition of the detector tensor is similar to that of the polarization

tensors that we defined earlier

_oaiaj  sisg _aiaf .y sisd
e, = ¢é,6) — 8, ex =éyel +éél, (32)

and which lead to the generic expression for GW strain
h(t) = hy(t)er + hy(t)ex. (33)

Turning now to the differential length change, this half the length determined by the
differential return time, and eq. becomes

5L = %h .d (34)

Figure [2| shows the geometry of the situation we are describing. In this case the
polarization tensors in the TT frame are obtained from the vectors labeled éf, ete.,
shown in the left panel. However, this is a very special choice, where the é,f vector is
parallel the z-axis of the detector frame before the rotation that brings it into the proper
sky direction. In general, the system in the TT frame is also rotated by an angle v, as
shown in the right panel of figure [2] (see also figure [3| for another view of the rotation
angles).

With this additional rotation, the polarization tensors are defined by
e =a'dl = fIF, ec=a'B + pl, (35)

and since the effect of the rotation is

& = éf costp + &)f sinyp (36)
B=—elsiny +éffcosy (37)

we find
€l =alad - pIp (38)

= [(éf)i cos ) + (éf)i sin 9] [(éf)j cos 1) + (éff)j sin|
— [—(éf); sinvy + (éf)i cos 1/1] [—(éf)j sin 1) + (ég)j cos 1/1] (39)
= (&) (eF) cos 20 + () (eff) sin 2y + (&) (ef)! sin24p — (&]1)'(e]f)? cos 20 (40)

= eij cos 2t + e sin 2 (41)
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Figure 2: The relative orientation of the sky and detector frames (left panel) and the
effect of a rotation by the angle ¢ in the sky frame (right panel), from Sathyaprakash

and Schutz [2]

Figure 3: A representation of the individual rotations used to obtain the expression for

the antenna patterns, from [IJ.



with a similar result for €2:

€+ = €4 cos21Y + ex sin 2y (42)
€x = —e, sin 21 + ey cos 21 (43)

Spelling out the differential length change , we see that it is a function of the
angles 6, ¢, and 1, i.e.,

5L

7 = F4(0,0,9) ha(8) + Fx (0,6, 9) hx(?) (44)

where the coefficients Fy and Fx are the antenna patterns of the interferometer. Car-
rying out calculations similar to those above, it can be shown that

1
Fy = 3 (1 + cos? 0) cos 26 cos 2¢) — cos  sin 2¢ sin 2¢ (45)
1
Fy = 3 (1 + cos? ) cos 2¢ sin 2¢) + cos 6 sin 2¢ cos 21) (46)
Figure [f] shows a graphical representation of I} and F.
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Figure 4: Antenna patterns Fly (left) and Fy (right).
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