The False Alarm Rate

Edoardo Milotti

December 13, 2024

Here we consider the False Alarm Rate (FAR) and related concepts. The FAR is used to define the statistical significance of detected gravitational–wave events.

- The False Alarm Rate (FAR) is the rate of false detections. It is a rate of coincidences similar to a detected one that would appear as statistical fluctuations. The FAR is measured as the number of such detections over time, so its units are number/year or number/second (or any other practical time unit)
- The inverse FAR is defined as iFAR = 1/FAR. The iFAR has units of time.
- The False Alarm Probability (FAP) is the probability of false detections. With an observation time T, the mean value of false detections is FAR $\times T$, therefore the (Poisson) probability of no false detection during this time is $e^{-\text{FAR}\times T}$, and finally the probability of at least one false detection is FAP = $1 e^{-\text{FAR}\times T}$.
- If the number of false detections corresponding to a given FAR value is $N_0 = FAR_0 \times T$, then the iFAR is iFAR₀ = T/N_0 , and therefore

$$iFAR = \frac{T}{N} = iFAR_0 \frac{N_0}{N}.$$
 (1)

This means that a log–log plot of iFAR vs. N is a straight line with slope -1. The fluctuation of N can be modeled with a Poisson distribution. An example plot is shown in figure 1. Note that this is not a cumulative plot.

Equation (1) can be put into a cumulative form as follows:

$$N(\text{FAR}) = T \times \text{FAR} \quad \Rightarrow \quad N(\text{FAR} \le \text{FAR}_0) \approx \int_0^{N(\text{FAR}_0)} N' dN' = \frac{1}{2} N^2(\text{FAR}_0) = \frac{T^2/2}{\frac{1}{1 + 1} N^2} \frac{T^2}{(2)} \frac{1}{(2)} \frac{1$$

and therefore

$$N(\text{iFAR} > \text{iFAR}_0) \approx \frac{T^2/2}{\text{iFAR}_0^2}.$$
 (3)

which, in a log-log plot is again a straight line, with slope -2.

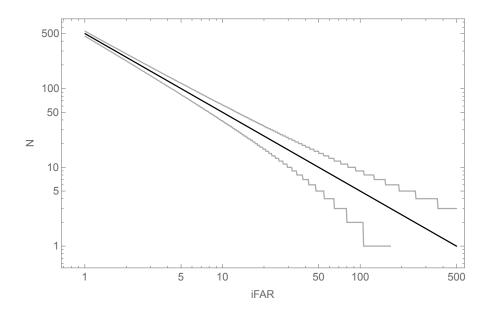


Figure 1: Differential (i.e., not cumulative) plot of the number of events vs. iFAR, with $iFAR_0 \times N_0 = 500$. The gray curves delimit the 90% probability band.

The cumulative plot is the sum of Poisson processes with different rates. Is this sum still a Poisson process? Yes, it is, we see this by recalling that the characteristic function of the Poisson distribution with average a is $F(z) = e^{(z-1)a}$, thefore the sum of two Poisson processes with averages a and b has the characteristic function

$$F(z) = e^{(z-1)a}e^{(z-1)b} = e^{(z-1)(a+b)}$$
(4)

which is again a Poisson process with average a + b.