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In this handout I describe some basic techniques in GW data analysis, partly follow-
ing the descriptions given in [2, 1].

1 Preliminaries

• the Fourier transform of a signal x(t) and its inverse are defined by the formulas

x̃(f) =

∫ +∞

−∞
x(t)e−2πiftdt, x(t) =

∫ +∞

−∞
x̃(f)e2πiftdf (1)

• the action of filters in the time domain is described by the convolution

(x ∗ y)(t) =
∫ +∞

−∞
x(t′)y(t− t′)dt′ (2)

• consider the Fourier transform of the convolution of two signals x(t) and y(t) with
Fourier transforms x̃(f) and ỹ(f)∫ +∞

−∞
(x ∗ y)(t)e−2πiftdt =

=

∫ +∞

−∞

[∫ +∞

−∞
x(t′)y(t− t′)dt′

]
e−2πiftdt

=

∫ +∞

−∞
x(t′)e−2πift′dt′

∫ +∞

−∞
y(t− t′)e−2πif(t−t′)dt

=

∫ +∞

−∞
x(t′)e−2πift′dt′

∫ +∞

−∞
y(t′′)e−2πift′′dt′′

= x̃(f)ỹ(f) (3)

(convolution theorem)
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• a process is stationary when all its statistics are constant in time, i.e., when its
probability distribution is invariant with respect to time translations. A noise
can be weakly stationary when only some of its statistics are time-invariant, for
example only mean and variance.

• a process is ergodic when time averages are equal to ensemble averages.

• Parseval’s theorem∫ +∞

−∞
x(t)y∗(t)dt =

∫ +∞

−∞
dt

∫ +∞

−∞
x̃(f ′)e2πif

′tdf ′
∫ +∞

−∞
ỹ∗(f ′′)e−2πif ′′tdf ′′ (4)

=

∫ +∞

−∞
df ′

∫ +∞

−∞
df ′′x̃(f ′)ỹ∗(f ′′)

∫ +∞

−∞
e2πi(f

′−f ′′)tdt (5)

=

∫ +∞

−∞
df ′

∫ +∞

−∞
df ′′x̃(f ′)ỹ∗(f ′′)δ(f ′ − f ′′) (6)

=

∫ +∞

−∞
x̃(f)ỹ∗(f)df. (7)

• the total square fluctuation of a real stationary signal s(t) is given by∫ +∞

−∞
|s(t)|2dt =

∫ +∞

−∞
dt

∣∣∣∣∫ +∞

−∞
s̃(f)e2πiftdf

∣∣∣∣2 (8)

=

∫ +∞

−∞
df ′

∫ +∞

−∞
df ′′s̃(f ′)s̃∗(f ′′)

∫ +∞

−∞
e2πi(f

′−f ′′)tdt (9)

=

∫ +∞

−∞
df ′

∫ +∞

−∞
df ′′s̃(f ′)s̃∗(f ′′)δ(f ′ − f ′′) (10)

=

∫ +∞

−∞
|s̃(f ′)|2df (11)

(Plancherel formula). Notice that this is what physicists usually call Parseval’s
theorem

• the power spectral density (PSD) of a signal s(t) is usually defined as follows

S(f) = lim
T→∞

1

T

∣∣∣∣∣
∫ +T/2

−T/2
s(t)e−2πiftdt

∣∣∣∣∣
2

, (12)

which is a two-sided spectral density where the frequency runs over negative as well
as positive values. However, for real signals — as in the case of the h(t) signal
recorded by a GW IFO — the PSD is an even function, i.e., S(−f) = S(f), and
for this reason it is customary to define and use the one-sided spectral density

S(1)(f) = lim
T→∞

2

T

∣∣∣∣∣
∫ +T/2

−T/2
s(t)e−2πiftdt

∣∣∣∣∣
2

, (13)

where f ≥ 0.
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• the definition is similar for a noise signal n(t), the only difference is an ensemble
average

S(1)(f) = lim
T→∞

2

T

〈∣∣∣∣∣
∫ +T/2

−T/2
n(t)e−2πiftdt

∣∣∣∣∣
2〉

, (14)

which is again a one-sided spectral density.

• the autocorrelation function of a zero-mean stationary, ergodic process s(t) is de-
fined by

R(τ) = ⟨s(t)s(t+ τ)⟩ = lim
T→∞

1

T

∫ +T/2

−T/2
s(t)s(t+ τ)dt (15)

Notice that here ergodicity is essential to substitute the ensemble average with a
time average.

• autocorrelation function and PSD are closely related. Consider the PSD

S(1)(f) = lim
T→∞

2

T

∣∣∣∣∣
∫ +T/2

−T/2
s(t)e−2πiftdt

∣∣∣∣∣
2

(16)

= lim
T→∞

2

T

∫ +T/2

−T/2
s(t′)e2πift

′
dt′

∫ +T/2

−T/2
s(t)e−2πiftdt (17)

Now let t = t′ + τ , so that dt = dτ in the second integral (where t′ behaves as a
constant), then we obtain

S(1)(f) = lim
T→∞

2

T

∫ +T/2

−T/2
s(t′)e2πift

′
dt′

∫ +T/2

−T/2
s(t′ + τ)e−2πift′e−2πifτdτ (18)

=

∫ +∞

−∞
e−2πifτdτ lim

T→∞

2

T

∫ +T/2

−T/2
s(t′)s(t′ + τ)dt′ (19)

= 2

∫ +∞

−∞
R(τ)e−2πifτdτ (20)

i.e., the PSD is the Fourier transform of the autocorrelation function (this is the
Wiener-Kintchine theorem).

• if the noise is white, stationary and Gaussian, it is completely characterized by its
variance N0 in the time domain. When one takes a two–sided spectral representa-
tion, this means (from Plancherel’s theorem) that

S(f) = σ2 (21)
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2 Gaussian noise

By definition a sampled noise is Gaussian when the samples have a Gaussian distribution.
Here we assume that samples of a Gaussian white noise process are taken with time
step ∆t, and that the variance of each sample is σ2, so that the correlation function is
Rjk = ⟨xjxk⟩ = σ2δjk. Using a discretized version of the Wiener-Kintchine theorem, we
find the single–sided PSD

S(1)
x (f) ≈ 2

∑
j=1,N

R0je
2πif(j∆t)∆t = 2σ2∆t (22)

The probability density function of each sample xi is

p(xi) =
1√
2πσ2

exp

[
− x2i
2σ2

]
, (23)

therefore the the joint probability density function of N samples is

p ({xi}) =
1

(2πσ2)N/2
exp

[
−
∑

i=1,N x2i
2σ2

]
=

1

(2πσ2)N/2
exp

[
−
∑

i=1,N x2i∆t

2σ2∆t

]
(24)

∝ exp

[
− 1

S
(1)
x

∫ +∞

−∞
x2(t)dt

]
(25)

= exp

[
−
∫ +∞

−∞

|x̃(f)|2

S
(1)
x

df

]
(26)

Now notice that we can generate non-white noises by proper filtering of a white noise.
In the time domain, the filtering operation is described by a convolution

y(t) =

∫ +∞

−∞
k(t− t′)x(t′)dt′ (27)

where k(t) is the pulse response function of the filter and its Fourier transform K(f) is
the transfer function of the filter. Then, in the frequency domain, we find

ỹ(f) = K(f)x̃(f) (28)

from the convolution theorem: this implies that

Sy(f) = |K(f)|2Sx(f) (29)

Therefore

p ({xi}) ∝ exp

[
−
∫ +∞

−∞

|x̃(f)|2

Sx
df

]
= exp

[
−
∫ +∞

−∞

|K(f)|2|x̃(f)|2

|K(f)|2Sx
df

]
= exp

[
−
∫ +∞

−∞

|ỹ(f)|2

Sy(f)
df

]
(30)
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and we see that the formula holds also for non-white noise.

Notice that the interferometer noise has a frequency-dependent spectral density (the
noise is not white), and therefore equation (30) represents what actually happens with
signals embedded in the interferometer noise, which is the same for all signals and
is obtained by averaging in a given time span of interest.

In addition, we can use the last result for the argument of the exponential as a
motivation to introduce a real–valued scalar product in this function space:

(x, y) =

∫ +∞

−∞

x̃(f)ỹ∗(f) + x̃∗(f)ỹ(f)

Sn(f)
df = 2 Re

∫ +∞

−∞

x̃(f)ỹ∗(f)

Sn(f)
df, (31)

or

(x, y) = 4 Re

∫ +∞

0

x̃(f)ỹ∗(f)

S
(1)
n (f)

df, (32)

when we use a single-sided spectral density, and Sn(f) is the power spectral density of
the interferometer noise, so that we can write the probability density of the noise process
as a function of such a scalar product

p ({xi}) ∝ exp

[
−(x, x)

2

]
. (33)

3 Optimal detection statistic and Bayes’ theorem

Recall that for two hypotheses – null hypothesis H0 and alternative hypothesis H1 –
Bayes’ theorem writes

P (H0,1|s) =
P (s|H0,1)P (H0,1)

P (s|H0)P (H0) + P (s|H1)P (H1)
(34)

and given the data, we select the hypothesis that maximizes the posterior probability
P (H0,1|s), this is the Maximum A Posteriori (MAP) choice. We can also consider the
odds ratio

P (H1|s)
P (H0|s)

=
P (s|H1)P (H1)

P (s|H0)P (H0)
(35)

which reduces to
P (H1|s)
P (H0|s)

=
P (s|H1)

P (s|H0)
(36)

if the prior probabilities of the null and of the alternative hypothesis are equal (in this
case the odds ratio is called the Bayes factor). It is noteworthy that the Bayes factor is
called the likelihood ratio in frequentist statistics, in which context it is shown to be the
“most powerful test of size α” (Neyman-Pearson lemma). Given that the logarithm is a
monotonically increasing function, the argument works also for the log likelihood ratio.
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4 Matched filters

The detection problem that we face in GW data analysis involves a null hypothesis where
the signal is just noise, s(t) = n(t), and an alternative hypothesis where the signal is
given by the sum of a GW signal plus noise, s(t) = n(t) + h(t). Then, the likelihood
ratio is

Λ =
p (s|H1)

p (s|H0)
= exp

{
1

2
[−(s− h, s− h) + (s, s)]

}
= exp [(s, h)− (h, h)/2] . (37)

Since the likelihood ratio depends on data only through the (s, h) product, which is a
log likelihood ratio, we conclude that this is the optimal detection statistic, i.e.,

(s, h) = 4 Re

∫ +∞

0

s̃(f)h̃∗(f)

S
(1)
n (f)

df (38)

where I used tildes to denote Fourier transforms to avoid confusion with other symbols,
and where Sn(f) is the noise PSD. Eq. (38) defines the matched filter.

Here we remark that in eq. (38) the expression s̃(f)/

√
S
(1)
n (f) is the Fourier trans-

form of the whitened signal and h̃∗(f)/

√
S
(1)
n (f) is the whitened filter transfer function.

Now consider the inverse Fourier transform of the conjugate of a Fourier transform∫ +∞

−∞
x̃∗(f)e2πiftdf =

[∫ +∞

−∞
x̃(f)e2πif(−t)df

]∗
= x(−t), (39)

we find that it represents the time-reversed signal. Therefore, when we consider eq.
(38), we see that it corresponds to a time convolution where the template signal h is
time-reversed (see figures 1 and 2 for an illustration).

4.1 Signal-to-noise ratio (SNR)

Ideally, the matched filter has a template signal h that is equal to the detected signal s,
and in that case

ρ2opt = (h, h) = 4

∫ +∞

0

|h̃(f)|2

S
(1)
n (f)

df (40)

which is the optimal power signal-to-noise ratio. The square root of the power SNR
ρ =

√
ρ2 is the amplitude SNR.

6



0 50 100 150 200

-1.0

-0.5

0.0

0.5

1.0

sample

w
hi
te
ne
d
am
p.

0 500 1000 1500 2000

-3

-2

-1

0

1

2

3

sample

w
hi
te
ne
d
am
p.

0 500 1000 1500 2000

-3

-2

-1

0

1

2

3

sample

w
hi
te
ne
d
am
p.

Figure 1: Consider the signal waveform in the top panel and the noise background in the
middle panel. The waveform has been injected into the noise background and the result
is shown in the bottom panel. Can you see where the waveform has been injected?
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Figure 2: The upper panel is the same as the bottom panel of figure 1, but here the red
bar show the region of injection of the signal into the noise background. The lower panel
shows the output of the matched filter obtained by sliding in time the waveform shown
in the top panel of figure 1. The peak shows the position of the start of the injection.

8


	Preliminaries
	Gaussian noise
	Optimal detection statistic and Bayes' theorem
	Matched filters
	Signal-to-noise ratio (SNR)


