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Here I start from the formula for the observed strain that was derived in the handout
Antenna patterns

δL

L
= F+(θ, ϕ, ψ) h+(t) + F×(θ, ϕ, ψ) h×(t) (1)

where

F+ =
1

2
(1 + cos2 θ) cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ (2)

F× =
1

2
(1 + cos2 θ) cos 2ϕ sin 2ψ + cos θ sin 2ϕ cos 2ψ (3)

The Fourier transform of the signal is

δ̃L

L
= F+(θ, ϕ, ψ) h̃+(f) + F×(θ, ϕ, ψ) h̃×(f) (4)

therefore the optimal power SNR is

ρ2 = 4

∫ +∞

0

1

S
(1)
n (f)

|F+(θ, ϕ, ψ) h̃+(f) + F×(θ, ϕ, ψ) h̃×(f)|2df (5)

= 4

∫ +∞

0

1

S
(1)
n (f)

[
F 2
+(θ, ϕ, ψ) |h̃+(f)|2 (6)

+F 2
×(θ, ϕ, ψ) |h̃×(f)|2 + 2F+(θ, ϕ, ψ)F×(θ, ϕ, ψ) Re h̃+(f)h̃

∗
×(f)

]
df (7)
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Now notice that

F 2
+ =

1

4
(1 + cos2 θ)2 cos2 2ϕ cos2 2ψ + cos2 θ sin2 2ϕ sin2 2ψ

− 1

4
(1 + cos2 θ) cos θ sin 4ϕ sin 4ψ (8)

F 2
× =

1

4
(1 + cos2 θ)2 cos2 2ϕ sin2 2ψ + cos2 θ sin2 2ϕ cos2 2ψ

+
1

4
(1 + cos2 θ) cos θ sin 4ϕ sin 4ψ (9)

F+F× =
1

8
(1 + cos2 θ)2 cos2 2ϕ sin 4ψ +

1

8
(1 + cos2 θ) cos θ sin 4ϕ cos2 2ψ

− 1

8
(1 + cos2 θ) cos θ sin 4ϕ sin2 2ψ − 1

2
cos2 θ sin2 2ϕ sin 4ψ

=
1

8
(1 + cos2 θ)2 cos 4ϕ sin 4ψ +

1

8
(1 + cos2 θ) cos θ sin 4ϕ cos 4ψ − 1

2
cos2 θ sin2 2ϕ sin 4ψ

(10)

This means that when we average over ψ, i.e., we assume that wave polarizations are
random, we find

⟨F 2
+⟩ =

1

8
(1 + cos2 θ)2 cos2 2ϕ+

1

2
cos2 θ sin2 2ϕ (11)

⟨F 2
×⟩ =

1

8
(1 + cos2 θ)2 cos2 2ϕ+

1

2
cos2 θ sin2 2ϕ (12)

⟨F+F×⟩ = 0

so that after averaging

⟨ρ2⟩ = 2P (θ, ϕ)

∫ +∞

0

|h̃(f)|2

S
(1)
n (f)

df (13)

where
|h̃(f)|2 = |h̃+(f)|2 + |h̃×(f)|2. (14)

and where

P (θ, ϕ) =
1

4
(1 + cos2 θ)2 cos2 2ϕ+ cos2 θ sin2 2ϕ (15)

is the antenna power pattern (see figure 1). This also explains why it is common to use
the combination (14) to define the root sum of squares

hrss =

√∫ +∞

0

(
|h̃+(f)|2 + |h̃×(f)|2

)
df (16)

which – assuming whitened strains – corresponds to the strain in eq. (13).

Now, we can connect these results to the detection volume. In the time domain, the
amplitude of the gravitational wave decays as the inverse of the distance to the source,
i.e.,

h =
rs
r
hs (17)
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Figure 2. The antenna power pattern (left panel) and its square root (amplitude pattern: right
panel) of a single interferometer oriented with axes in the x–y plane, averaged over polarizations
of the incoming wave. The amplitude pattern represents the shape of the detection volume of the
instrument, or its maximum detection reach in different directions.

onto the sky by a rotation angle α. During the observation the polarization will rotate in
some way determined by H+(f ) and H×(f ). This is of no interest to us here. The important
point is that the ensemble of sources at the same position in space contains systems with all
possible initial angles α. When we average the power SNR in (3) over the ensemble, we will
simply be changing in a uniformly random way the projection of the source’s intrinsic + and
× components onto the detector’s. The result is that the mean power SNR over the ensemble
(denoted by 〈 〉) depends only on the sum of the squares of the sensitivity functions of the
detector to both polarizations:

〈ρ2〉 = 2[F+(θ,φ,ψ)2 + F×(θ,φ,ψ)2]
∫ ∞

0

|H(f )|2

Sh(f )
df, (4)

where |H(f )|2 = |H+|2 + |H×|2. We call the function

P(θ,φ) = F+(θ,φ,ψ)2 + F×(θ,φ,ψ)2

= 1
4 (1 + cos2 θ)2 cos2 2φ + cos2 θ sin2 2φ (5)

the antenna power pattern of a single interferometer. Note that, from (2), the antenna power
pattern is independent of the angle ψ that is the reference angle for the wave’s polarization,
as one would expect after our ensemble polarization average. It is plotted in the detector
coordinate frame in figure 2. This is often referred to as the ‘peanut diagram’.

If, for a single detector, there is a detection threshold ρmin on the amplitude SNR, then a
signal from a direction (θ, φ) can be expected to be detected if

2P(θ,φ)

∫ ∞

0

|H(f )|2

Sh(f )
df ! ρ2

min. (6)

For the purposes of our discussion, we suppose that the gravitational wave source has a
standard intrinsic amplitude, so that its received amplitude H(f ) is inversely proportional to
the distance r to the source. We also suppose that these sources are randomly distributed in

9

Figure 1: The antenna power pattern (left panel) and its square root (amplitude pattern:
right panel) of a single interferometer oriented with axes in the x–y plane, averaged over
polarizations of the incoming wave. The amplitude pattern represents the shape of
the detection volume of the instrument, or its maximum detection reach in different
directions (from [1]

where hs is the amplitude at the standard distance rs. The same holds for the Fourier
transform

h̃(f) =
rs
r
h̃s(f) (18)

and we can use this to explicitly indicate the dependence on the source distance in eq.
(13)

⟨ρ2⟩ = 2

r2
P (θ, ϕ)

∫ +∞

0

|rsh̃s(f)|2

Sn(f)
df (19)

When we set the standard threshold for visibility of a source at ρmin =
√
⟨ρ2⟩ = 8,

we find the corresponding distance, and in particular for the maximum of P (θ, ϕ) which
is obtained for θ = 0 or θ = π, P (0, ϕ) = 1, we obtain the visibility distance

DV =
1

ρmin

√
2

∫ +∞

0

|rsh̃r(f)|2
Sn(f)

df (20)

Notice that all the complex details of filtering and the detector noise curve are hidden
in the single parameter DV .
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When several detectors are operating in a common network, the total SNR is just
the sum of the individual SNRs

ρ2N =
∑

k=1,ND

ρ2k (21)

where ND is the number of detectors in operation. Therefore, after averaging over the
polarization angle, we find

⟨ρ2N ⟩ = 2

r2

∑
k=1,ND

Pk(θ, ϕ)

∫ +∞

0

|rsh̃s(f)|2

Sn,k(f)
df (22)

This distorts the antenna power patterns and makes the antenna response more isotropic.
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