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Compact objects, whose binary systems are the most frequent sources of gravitational
waves, have strong gravitational fields that, in the special case of non-rotating objects,
can be described by the Schwarzschild metric. Although in this course we do not deal
with compact objects in detail, we introduce here this important metric, following the
general treatment in [1].

1 The Schwarzschild metric

As a first step, we determine the most general stationary isotropic metric around a
massive spherical object. This metric must depend only on the three rotational
invariants of the spacelike coordinate, i.e., on

r2 = x · x, dx · dx, x · dx, (1)

i.e., the line element must have the form

ds2 = A(t, r)dt2 −B(t, r)dt(x · dx)− C(t, r)(x · dx)2 −D(t, r)(dx · dx) (2)

where A, B, C, and D are arbitrary functions of t and r.

When we write the spatial coordinates in polar form

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ, (3)

we find

dx1 = sin θ cosϕdr + r cos θ cosϕdθ − r sin θ sinϕdϕ (4a)

dx2 = sin θ sinϕdr + r cos θ sinϕdθ + r sin θ cosϕdϕ (4b)

dx3 = cos θ dr − r sin θ dθ (4c)

and therefore

x · dx = sin2 θ cos2 ϕ rdr + cos θ sin θ cos2 ϕ rdθ − sin2 θ cosϕ sinϕ rdϕ

+ sin2 θ sin2 ϕ rdr + cos θ sin θ sin2 ϕ rdθ + sin θ2 cosϕ sinϕ rdϕ

+ cos θ2 rdr − r sin θ cos θ dθ = rdr (5a)

dx · dx = dr2 + r2 dθ2 + r2 sin2 θ dϕ2. (5b)
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Therefore,

ds2 = A(t, r)dt2−B(t, r)r dt dr−C(t, r)r2dr2−D(t, r)(dr2+r2 dθ2+r2 sin2 θ dϕ2). (6)

Now, we carry out a sequence of nontrivial steps:

• we collect terms

ds2 = A(t, r)dt2−B(t, r)r dt dr−
[
C(t, r)r2 +D(t, r)

]
dr2−D(t, r)(r2 dθ2+r2 sin2 θ dϕ2),

(7)

• we redefine the metric by absorbing the terms in r into the definitions of the
coefficients

ds2 = A(t, r)dt2 −B(t, r)dt dr − C(t, r)dr2 −D(t, r)(dθ2 + sin2 θ dϕ2), (8)

• we define a new radial coordinate r̄2 = D(t, r), so that

ds2 = A(t, r̄)dt2 −B(t, r̄)dt dr̄ − C(t, r̄)dr̄2 − r̄2(dθ2 + sin2 θ dϕ2), (9)

(with a corresponding redefinition of the coefficients),

• we diagonalize the metric by defining a new timelike coordinate t̄, such that

dt̄ = Φ(t, r̄)

[
A(t, r̄)dt− 1

2
B(t, r̄)dr̄

]
, (10)

and therefore

dt̄2 = Φ2

[
A2dt2 −AB dt dr̄ +

1

4
B2dr̄2

]
, (11)

from which we find

Adt2 −B dt dr̄ =
1

AΦ2
dt̄2 − 1

4A
B2dr̄2. (12)

• we redefine the coefficients so that

Ā =
1

AΦ2
, B̄ = C +

B2

4A
, (13)

and find
ds2 = Ādt̄2 − B̄dr̄2 − r̄2(dθ2 + sin2 θ dϕ2), (14)

• we remove bars, to obtain the general expression for the isotropic, spherically
symmetric metric

ds2 = A(t, r)dt2 −B(t, r)dr2 − r2(dθ2 + sin2 θ dϕ2), (15)
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• finally, we assume that the metric does not depend on t, i.e., that the metric
stationary

ds2 = A(r)dt2 −B(r)dr2 − r2(dθ2 + sin2 θ dϕ2), (16)

The following comments are in order:

• the metric is stationary because there is no dependence on t, but this does not
mean that there are no dynamic processes; in case there are no ongoing dynamic
processes, we require the metric to be independent of the direction of time, i.e.
invariant with respect to the transformation t → −t, and in this case the metric is
called static;

• an example of a stationary metric is that produced by a rotating star, where a
reversal of time direction changes the direction of the angular velocity but the
metric components remain unchanged;

• the line element (16) is already invariant with respect to the transformation t → −t,
and therefore it is not only stationary but also static;

• for fixed t, r the line element (16) describes the geometry of 2-spheres.

2 Solution of empty-space field equations

The metric tensor associated with the line element (16) is diagonal and has just 4 non-
vanishing components

g00 = A(r), g11 = −B(r), g22 = −r2, g33 = −r2 sin2 θ. (17)

Correspondingly, the contravariant metric tensor has components

g00 =
1

A(r)
, g11 = − 1

B(r)
, g22 = − 1

r2
, g33 = − 1

r2 sin2 θ
. (18)

We can use these expressions to compute the Ricci tensor and find the solution of
Einstein’s equations in vacuum (Tµν = 0)

Rµν =
8πG

c4

(
Tµν −

1

2
gµνT

)
= 0 (19)

Using equations (18) and with the help of the Diagonal metric worksheet, we can
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find out all the nonvanishing components of the Ricci tensor, i.e.,

R00 = −A′′

2B
+

A′

4B

(
A′

A
+

B′

B

)
− A′

rB
(20a)

R11 =
A′′

2A
− A′

4A

(
A′

A
+

B′

B

)
− B′

rB
(20b)

R22 =
1

B
− 1 +

r

2B

(
A′

A
− B′

B

)
(20c)

R33 = R22 sin
2 θ (20d)

From eqs. (20a) and (20b), we find

A′B +AB′ = (AB)′ = 0 (21)

and therefore
AB = constant ≡ α (22)

Substituting B = α/A in (20c), we find

A+ rA′ = α (23)

which we solve to obtain
rA = α(r + k) (24)

with k another integration constant. Finally,

A(r) = α

(
1 +

k

r

)
, B(r) =

(
1 +

k

r

)−1

(25)

In the weak field limit we must retrieve the Newtonian result, i.e.,

A(r)

c2
→

(
1 +

2Φ

c2

)
(26)

where Φ is the Newtonian gravitational potential Φ = −GM/r, and therefore α = 1,
k = −2GM/c2, and the Schwarzschild metric is given by the line element

ds2 = c2
(
1− 2GM

c2r

)
dt2 −

(
1− 2GM

c2r

)−1

dr2 − r2dθ2 − r2 sin2 θdϕ2. (27)
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