Notes on the Li \& Pacziński "kilonova paper"

Edoardo Milotti

December 19, 2023

In this short handout I provide a quick derivation of some equations in the Li \& Pacziński paper [1] (LP).

- LP denote the speed with V, but we also need a symbol for volume, so here I use v for speed and V for volume.
- Here I use the standard convention that U is the energy and u is the energy density.
- LP denote the entropy per unit mass with the symbol S; following the standard conventions I use S for entropy and S / M for the entropy per unit mass.
- From the equations for the energy density of blackbody radiation it can be shown that the energy density is

$$
\begin{equation*}
u=3 P=a T^{4} \tag{1}
\end{equation*}
$$

where P is the pressure, T is the temperature of the photon gas, and

$$
\begin{equation*}
a=\frac{8 \pi^{5} k_{B}^{4}}{15 h^{3} c^{3}} \approx 7.56 \times 10^{-16} \mathrm{~J} \mathrm{~K}^{-4} \mathrm{~m}^{-3} . \tag{2}
\end{equation*}
$$

The parameter a is related to the Stefan-Boltzmann constant: $\sigma=a c / 4$.
It can also be shown that the entropy is

$$
\begin{equation*}
S=\frac{4}{3} a V T^{3} \tag{3}
\end{equation*}
$$

Then, the internal energy change per unit mass in the LP paper (equation 3 in the paper) is

$$
\begin{equation*}
\frac{T d S}{M}=\frac{d U}{M}=d\left(\frac{U / V}{M / V}\right)=d\left(\frac{u}{\rho}\right)=\frac{d u}{\rho}+u d\left(\frac{1}{\rho}\right) . \tag{4}
\end{equation*}
$$

Using equation 1 in the paper

$$
\begin{equation*}
\rho=\frac{3 M}{4 \pi v^{3}} t^{-3}, \tag{5}
\end{equation*}
$$

we find

$$
\begin{equation*}
\frac{d U}{M}=\frac{4 \pi v^{3}}{3 M}\left(t^{3} d u+3 u t^{2} d t\right) . \tag{6}
\end{equation*}
$$

- Equation 5 for radioactive heating in LP, is obtained as follows, using the rate $\lambda_{\mathrm{rad}}=t_{\mathrm{rad}}^{-1}$ instead of t_{rad}. A uniform distribution of $\ln t_{\mathrm{rad}}$ corresponds to a power law distribution of t which which corresponds to the probability

$$
\begin{equation*}
\sim t^{-1} d t=\lambda\left|d\left(\frac{1}{\lambda}\right)\right|=\frac{d \lambda}{\lambda}=d \ln \lambda, \tag{7}
\end{equation*}
$$

i.e., we obtain a uniform distribution in $\ln \lambda$. Then we have to compute the integral

$$
\begin{equation*}
f c^{2} \int_{\lambda_{\min }}^{\lambda_{\max }} \lambda e^{-\lambda t} \frac{d \lambda}{\lambda}=-\left.\frac{f c^{2}}{t} e^{-\lambda t}\right|_{\lambda_{\min }} ^{\lambda_{\max }} \approx \frac{f c^{2}}{t} . \tag{8}
\end{equation*}
$$

- Radiative losses. Substituting the expressions for $u, R=v t$ and σ in the expression $L=4 \pi R^{2} F$ we find the heat loss

$$
\begin{equation*}
L=4 \pi R^{2} F=4 \pi R^{2} \frac{\sigma T^{4}}{\kappa \rho R}=4 \pi R^{2} \frac{a c T^{4}}{4 \kappa R} \frac{4 \pi v^{3} t^{3}}{3 M}=\frac{4 \pi^{2} c}{3 \kappa M}\left(a T^{4}\right)\left(v^{4} t^{4}\right)=\frac{4 \pi^{2} c v^{4}}{3 \kappa M} u t^{4}, \tag{9}
\end{equation*}
$$

which is equation 6 in LP.

- If $\kappa \rho R=1$, then we obtain equation 7 in LP as follows:

$$
\begin{equation*}
R=v t_{c}=\frac{1}{\kappa \rho}=\frac{4 \pi v^{3} t_{c}^{3}}{3 \kappa M}, \tag{10}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
t_{c}=\left(\frac{3 \kappa M}{4 \pi v^{2}}\right)^{1 / 2} \tag{11}
\end{equation*}
$$

- Starting from the heat balance

$$
\begin{equation*}
\frac{L}{M}=\epsilon-T \frac{d(S / M)}{d t}, \tag{12}
\end{equation*}
$$

we find

$$
\begin{equation*}
\frac{1}{M}\left(\frac{4 \pi^{2} c v^{4}}{3 \kappa M} u t^{4}\right)=\epsilon-\left(\frac{4 \pi v^{3}}{3 M}\right)\left(t^{3} \frac{d u}{d t}+3 u t^{2}\right) \tag{13}
\end{equation*}
$$

and finally we obtain eq. (9) in LP

$$
\begin{equation*}
t^{3} \frac{d u}{d t}+3 u t^{2}=\left(\frac{3 M}{4 \pi v^{3}}\right) \epsilon-\left(\frac{\pi c v}{\kappa M}\right) u t^{4} . \tag{14}
\end{equation*}
$$

References

[1] Li-Xin Li and Bohdan Paczyński. Transient events from neutron star mergers. The Astrophysical Journal, 507(1):L59, 1998.

