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1 The equivalence principle and the necessity of curved
spacetime

Later in the course we shall explore in detail the meaning of the equivalence principle.
For now, it suffices to say that it establishes the equivalence of inertial and gravitational
mass. If this is so, mass simplifies in the equations of motion of different bodies that
feel no forces other than gravity, therefore the equations do not depend on mass and all
bodies “fall” in the same way in the gravitational field if launched from the same position
with the same initial velocity: indeed this is the essence of the geodesic hypothesis (a
geodesic is a path that has the shortest length between any two points), a free particle
follows a geodesic in spacetime. Geodesics in spacetime are determined by the distri-
bution of mass energy in the universe, as we can easily see by example, considering for
instance the forces that act on an astronaut (Fig. 1), or the tides on Earth (Fig. 2).

Figure 1: As you fall toward Earth, tidal gravitational forces stretch you from head to
foot and squeeze you from the sides (taken from [4]).
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Figure 2: On the side of the Earth nearest the Moon, the lunar gravity is stronger
than at the Earth’s center, so it pulls the oceans toward the Moon more strongly than it
pulls the solid Earth, and the oceans in response stretch outward a bit toward the Moon.
On the side farthest from the Moon, the lunar gravity is weaker, so it pulls the oceans
toward the Moon less strongly than it pulls the solid Earth, and the oceans in response
stretch out away from the Moon. On the left side of the Earth, the Moon’s gravitational
pull, which points toward the Moon’s center, has a slight rightward component, and
on the right side it has a slight leftward component; and these components squeeze the
oceans inward. This pattern of oceanic stretch and squeeze produces two high tides and
two low tides each day, as the Earth rotates (taken from [4]).

Fig. 3(a) shows the same situation in a more schematic way: the freely-falling lab
frame is represented by a box with four floating balls. The frame falls towards the
Earth, and because of the variable intensity and direction of gravity on each ball, the
balls appear to move with respect to the box’s center.

When we trace the trajectories of the balls in Fig. 3(a) in a spacetime diagram, we
find that they are curved, see Fig. 4
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FIG. 1.4 (a) Because the gravitational field of the earth (indeed, any gravitating object) is non-
uniform, off-center floating balls in a freely falling frame will experience small accelerations
relative to the frame's center of mass. (b) Such accelerations are not observed in a frame float-
ing in deep space: floating balls initially at rest remain truly at rest.

To predict what happens, let us retreat for the moment back into the Newtonian
picture (which will predict the correct behavior even if it does not provide the correct
interpretation). In that picture, the room's center of mass falls toward the earth with a
certain acceleration. The ball near the ceiling is just a bit farther from the earth's center
than the room's center of mass, so it experiences a slightly smaller acceleration, just
as the ball near the floor experiences a slightly larger acceleration. The balls near the
walls accelerate toward the earth's center and thus along lines angled slightly inward
with respect to the direction along which the room accelerates. So as time passes, we
will observe the top and bottom balls to accelerate away from the room's center, while
the side balls will accelerate toward the room's center. This is not the behavior that
we would observe in a frame floating in deep space: in such a frame, the balls would
remain strictly at rest.

The relative accelerations of off-center free bodies, then, is something we do ob-
serve in an inertial (freely falling) frame near a gravitating object, but not in an inertial
frame in deep space. These relative accelerations therefore represent a frame-indepen-
dent (and thus real) indication that we must be near a gravitating object.

We call this aspect of gravity the tidal effect of a gravitational field, because (as
Newton himself first realized) this effect explains tides on the earth's surface. Note that
we can consider the earth to be a frame freely falling in the moon's gravitational field.
Like the balls in our freely falling room, ocean waters on the sides of the earth closest to
and farthest from the moon will accelerate away from the earth's center and thus bulge
outward, while ocean waters on the sides will press inward. This explains the 12-hour
tidal variation of the depth of the ocean.

Spacetime Is Curved. How do we interpret these tidal effects from the perspective of
general relativity? Figure 1.5 shows a spacetime graph of the trajectories of the two side
balls in our falling-room experiment. Since these balls are initialy at rest with respect
to each other, their paths in spacetime are initially parallel (they remain at an initially
constant separation as time passes). As time progresses, however, they eventually begin
to move toward each other with increasing speed, so the paths curve toward cach other
as shown.

frame floating in deep space

toward the carth's center

FIG. I.5 Plotted in spacetime, the geo-
desics that the balls in figure 1.4 follow
(as measured in the freely-falling
frame) are initially parallel (the bals
have initially constant separation),
but gradually bend toward each other
(because their separation eventually
decreases). This bending of initial
parallel lines signals that the underly-
ing spacetime is curved.

Figure 3: (a) Because the gravitational field of the earth (indeed, any gravitating object)
is non-uniform, off-center floating balls in a freely falling frame will experience small
accelerations relative to the frame’s center of mass. (b) Such accelerations are not
observed in a frame floating in deep space: floating balls initially at rest remain truly at
rest (taken from [3]).
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as the ball near the floor experiences a slightly larger acceleration. The balls near the
walls accelerate toward the earth's center and thus along lines angled slightly inward
with respect to the direction along which the room accelerates. So as time passes, we
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frame in deep space. These relative accelerations therefore represent a frame-indepen-
dent (and thus real) indication that we must be near a gravitating object.

We call this aspect of gravity the tidal effect of a gravitational field, because (as
Newton himself first realized) this effect explains tides on the earth's surface. Note that
we can consider the earth to be a frame freely falling in the moon's gravitational field.
Like the balls in our freely falling room, ocean waters on the sides of the earth closest to
and farthest from the moon will accelerate away from the earth's center and thus bulge
outward, while ocean waters on the sides will press inward. This explains the 12-hour
tidal variation of the depth of the ocean.

Spacetime Is Curved. How do we interpret these tidal effects from the perspective of
general relativity? Figure 1.5 shows a spacetime graph of the trajectories of the two side
balls in our falling-room experiment. Since these balls are initialy at rest with respect
to each other, their paths in spacetime are initially parallel (they remain at an initially
constant separation as time passes). As time progresses, however, they eventually begin
to move toward each other with increasing speed, so the paths curve toward cach other
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(as measured in the freely-falling
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Figure 4: Plotted in spacetime, the geodesics that the balls in figure 3(a) follow (as
measured in the freely-falling frame) are initially parallel (the balls have initially constant
separation), but gradually bend toward each other (because their separation eventually
decreases). This bending of initial parallel lines signals that the underlying spacetime is
curved (taken from [3]).
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2 Riemann manifolds

We found that the equivalence principle (in essence, the indistinguishability between
gravitational pull and dynamical acceleration) implies that the effects of gravity must
be associated with a curvature of space-time. Mathematically, this means that we must
turn to the manifolds studied by Riemann. Again, I take some material from [1] ch. 4
(grayed text), and [2] ch. 1 (blue text).

In a nutshell:

• A Riemann manifold can be loosely described as a smoothly curved space that is
locally flat.

• A manifold is n-dimensional when the position of a point is specified by n coordi-
nates.

• Not all continuous spaces are manifolds. E.g., a one-dimensional line emerging
from a plane is not a manifold; two cones joined at the apex are not a manifold
(parts of these objects are not locally Euclidean).

• A manifold can be embedded in a larger space and display extrinsic curvature.

• A manifold can exist without any embedding at all and display intrinsic curva-
ture.

• A manifold can display both extrinsic and intrinsic curvature.

• Manifolds exist that have extrinsic curvature and no intrinsic curvature.

• Riemann discovered that themetric tensor gµν = eµ·eν contains all the information
necessary to describe a manifold.

• The metric tensor is symmetric, i.e., gµν = gνµ.

• Riemann manifolds have positive-definite metrics; the metric of space-time is not
positive-definite, and it is described by a pseudo-Riemann manifold.

• The line element of a Riemann manifold is given by dℓ2 = gijdx
idxj .

• The description of Riemann manifolds requires tensor calculus.

• The manifolds of General Relativity are pseudo-Riemann because the metric is not
positive-definite.
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2.1 Manifolds

The model for the spacetime of general relativity makes use of a certain kind of four-
dimensional manifold, so I need to explain what this involves. In doing this, I shall not
give a precise mathematical definition, but rather explain and describe the properties
of an N -dimensional manifold. I assume that this manifold is endowed with a metric
tensor field (which is not a general requirement of manifolds) and explain how this is
used to define and handle metric properties. I shall be guided by the notation and
terminology developed when considering arbitrary curvilinear coordinates in Euclidean
space and parameterized surfaces. What makes a manifold N -dimensional is that points
in it can be labeled by a system of N real coordinates x1, x2, . . . , xN , in such a way that
the correspondence between the points and the labels is one-to-one. We do not require
that the whole of the manifold M should be covered by one system of coordinates, nor
do we regard any one system as in some way preferred. The general situation is that we
have a collection of coordinate systems, each covering some part of M , and all these are
on an equal footing. Where two coordinate systems overlap, there are sets of equations
giving each coordinate of one system as a function of the coordinates of the other. So if
the coordinates xi cover the region U and the coordinates x′i cover the region U ′, where
these are overlapping regions, then the coordinates of points in the overlap are related
by equations of the form

x′
i
= x′

i
(x1, . . . , xN ) (i = 1, . . . , N) (1)

giving each x′i as a function of the coordinates xi, and these have inverses of the form

xi = xi(x′
1
, . . . , x′

N
) (i = 1, . . . , N) (2)

giving each xi as a function of the coordinates x′i. We shall assume that the functions
involved are differentiable so that the partial derivatives

∂x′i

∂xj
,

∂xi

∂x′j
(3)

exist. This means that the manifold M is a differentiable manifold (mathematicians
allow manifolds in which the coordinate-transformation functions are merely continuous
and call them topological manifolds.)

3 The metric tensor

The distinction between contravariant and covariant transformations was established
earlier, when I also observed that it only became meaningful when working with coordi-
nate systems that are not Cartesian. Now I examine relationships that can systematize
the use of more general metric spaces (the Riemannian spaces). For illustration purposes,
I start with three dimensions.

Letting qi denote coordinates in a general coordinate system, writing the index as
a superscript to reflect the fact that coordinates transform contravariantly, I define
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covariant basis vectors εi that describe the displacement (in Euclidean space) per unit
change in qi , keeping the other qj constant. For the situations of interest here, both
the direction and magnitude of εi may be functions of position, so it is defined as the
derivative

εi =
∂x

∂qi
êx +

∂y

∂qi
êy +

∂z

∂qi
êz (4)

An arbitrary vector A can now be formed as a linear combination of the basis vectors,
multiplied by coefficients:

A = A1ε1 +A2ε2 +A3ε3 (5)

At this point we have a linguistic ambiguity: A is a fixed object (usually called a vector)
that may be described in various coordinate systems. But it is also customary to call
the collection of coefficients Ai a vector (more specifically, a contravariant vector), while
we have already called εi a covariant basis vector. The important thing to observe
here is that A is a fixed object that is not changed by our transformations, while its
representation (the Ai) and the basis used for the representation (the εi) change in
mutually inverse ways (as the coordinate system is changed) so as to keep A fixed.

Given our basis vectors, we can compute the displacement (change in position) as-
sociated with changes in the qi. Because the basis vectors depend on position, our
computation needs to be for small (infinitesimal) displacements ds. We have

ds2 = (dqiεi) · (dqjεj) = gijdq
idqj (6)

where we have used the metric tensor

gij = εi · εj (7)

Since ds2 is an invariant under rotational (and reflection) transformations, it is a scalar,
and the quotient rule permits us to identify gij as a covariant tensor. Because of its role
in defining displacement, gij is called the covariant metric tensor.

Note that the basis vectors can be defined by their Cartesian components, but they
are, in general, neither unit vectors nor mutually orthogonal. Because they are often
not unit vectors we have identified them by the symbol ε, not ê. The lack of both
a normalization and an orthogonality requirement means that gij , though manifestly
symmetric, is not required to be diagonal, and its elements (including those on the
diagonal) may be of either sign. It is convenient to define a contravariant metric
tensor that satisfies

gikg
kj = gjkgki = δji (8)

and is therefore the inverse of the covariant metric tensor. We will use gij and gij to
make conversions between contravariant and covariant vectors that we then regard as
related. Thus, we write

gijF
j = Fi, gijFj = F i (9)
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Following these rules, we can manipulate the representation of a vector

A = Aiεi = Aiδki εk = Aigijg
jkεk = Ajε

j , (10)

showing that the same vector can be represented either by contravariant or covariant
components.

4 Covariant and contravariant bases

Above, we have already met the contravariant basis vectors

εi =
∂qi

∂x
êx +

∂qi

∂y
êy +

∂qi

∂z
êz, (11)

giving them this name in anticipation of the fact that we can prove them to be the
contravariant versions of the εi. Our first step in this direction is to verify that

εi · εj =
∂x

∂qj
∂qi

∂x
+
∂y

∂qj
∂qi

∂y
+
∂z

∂qj
∂qi

∂z
=
∂qi

∂qj
= δij , (12)

a consequence of the chain rule and the fact that qi and qj are independent variables.
Similarly, we can easily show that

(εi · εk)(εk · εj) = gikgkj = δij . (13)

The relation between the covariant and contravariant basis vectors is useful for writing
relationships between vectors. LetA andB be vectors with contravariant representations
Ai and Bi. We may convert the representation of B to Bi = gijB

j , after which the scalar
product A ·B takes the form

A ·B = Aiεi ·Bjε
j = AiBjεi · εj = AiBi (14)

Another application is in writing the gradient in general coordinates. If a function ψ
is given in a general coordinate system qi, its gradient ∇ψ is a vector with Cartesian
components

(∇ψ)j =
∂ψ

∂qi
∂qi

∂xj
(15)

or, in vector notation

∇ψ =
∂ψ

∂qi
εi (16)

showing that the covariant representation of ∇ψ is the set of derivatives ∂ψ/∂qi. If we
have reason to use a contravariant representation of the gradient, we can convert its
components using the metric tensor.
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5 Covariant derivatives

Moving on to the derivatives of a vector, we find that the situation is much more compli-
cated because the basis vectors εi are in general not constant, and the derivative will not
be a tensor whose components are the derivatives of the vector components. Starting
from the transformation rule for a contravariant vector,

V ′i =
∂xi

∂qk
V k (17)

and differentiating with respect to qj , we get (for each i )

∂V ′i

∂qj
=
∂xi

∂qk
∂V k

∂qj
+

∂2xi

∂qj∂qk
V k (18)

which appears to differ from the transformation law for a second-rank tensor because it
contains a second derivative. To see what to do next, let’s write Eq. (18) as a single
vector equation in the xi coordinates, which we take to be Cartesian. The result is

∂V′

∂qj
=
∂V k

∂qj
εk + V k ∂εk

∂qj
(19)

We now recognize that ∂εk/∂q
j must be some vector in the space spanned by the set of

all εi and we therefore write
∂εk
∂qj

= Γµ
jkεµ (20)

The quantities Γµ
jk are known as Christoffel symbols of the second kind (those

of the first kind will be encountered shortly) or connection coefficients. Using the
orthogonality property of the ε, Eq. (12), we can solve Eq. (20) by taking its dot
product with any εm, finding

εm · ∂εk
∂qj

= εm · Γµ
jkεµ = δmµ Γµ

jk = Γm
jk (21)

i.e.,

Γm
jk = εm · ∂εk

∂qj
. (22)

Moreover, we note that Γm
jk = Γm

kj , which can be demonstrated from the expression

∂εi
∂qj

=
∂2x

∂qi∂qj
êx +

∂2y

∂qi∂qj
êy +

∂2z

∂qi∂qj
êz (23)

which is clearly symmetric with respect to the exchange of i and j.

Returning now to Eq. (19) and inserting the expression (20), we initially get

∂V′

∂qj
=
∂V k

∂qj
εk + V kΓµ

jkεµ =
∂V k

∂qj
εk + V µΓk

jµεk =

(
∂V k

∂qj
+ V µΓk

jµ

)
εk (24)
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The parenthesized quantity in Eq. (24) is known as the covariant derivative – some-
times also called absolute gradient – of V , and it has (unfortunately) become standard
to identify it by the awkward notation

V k
;j =

∂V k

∂qj
+ V µΓk

jµ

∂V′

∂qj
= V k

;j εk (25)

An alternative symbol for the covariant derivative is ∇jV
k = V k

;j (preferred in these
handouts).

If we rewrite Eq. (24) as a differential

dV′ =
(
dqj ∇jV

k
)
εk (26)

and take note that dqj is a contravariant vector, while εk is covariant, we see that the
covariant derivative, ∇jV

k is a mixed second-rank tensor. However, it is important
to realize that although they bristle with indices, neither ∂V k∂qj nor Γk

jµ have
individually the correct transformation properties to be tensors. It is only the
combination in Eq. (25) that has the requisite transformational attributes.

What about the covariant derivative of a covariant vector? We can determine its
expression by taking the derivative of a scalar quantity

∇k(A
iBi) = (∇kA

i)Bi +Ai(∇kBi) =

(
∂Ai

∂qk
+AmΓi

km

)
Bi +Ai(∇kBi), (27)

and remarking that since AiBi is a scalar quantity with a representation which does not
depend on the local basis vectors, and therefore the covariant derivative is the same as
the gradient, i.e.,

∇k(A
iBi) = ∂k(A

iBi) =
∂Ai

∂qk
Bi +Ai∂Bi

∂qk
, (28)

where ∂k is shorthand for the derivative with respect to qk. Then, we find(
∂Ai

∂qk
+AmΓi

km

)
Bi +Ai(∇kBi) =

∂Ai

∂qk
Bi +Ai∂Bi

∂qk
. (29)

After simplifying the term common to both sides, we find

AiΓm
kiBm +Ai∇kBi = Ai∂Bi

∂qk
, (30)

where the two dummy indices in the first term have been exchanged. This means that

Ai

(
Γm
kiBm +∇kBi −

∂Bi

∂qk

)
= 0. (31)
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Since Ai is an arbitrary vector, the expression in parenthesis must vanish, and therefore

∇kBi =
∂Bi

∂qk
−BmΓm

ki; (32)

the expression of the covariant derivative is the same as that of a contravariant vector,
except for the sign of the additional term. Like ∇jV

i, ∇jVi is also a second-rank tensor.

This proof can be extended to show that the covariant derivative of a tensor contains
as many additional positive terms with the Christoffel symbol as there are contravariant
indices and as many additional terms as there are covariant indices. For instance,

∇iT
jk
ℓ =

∂T jk
ℓ

∂qi
+ Γj

imT
mk
ℓ + Γk

imT
jm
ℓ − Γm

iℓT
jk
m (33)

The physical importance of the covariant derivative is that it includes
the changes in the basis vectors pursuant to a general dqj, and is therefore
more appropriate for describing physical phenomena than a formulation that
considers only the changes in the coefficients multiplying the basis vectors.

6 Evaluation of the Christoffel symbols

Although a quantity with three indices in 4-dimensional space can have as may as 64
independent components, the connection coefficients have symmetrical lower indices,
and therefore, for a fixed upper index, they have 10 components. Finally, taking into
account the 4 possibile values of the upper index, there are 40 independent values of
the connection coefficients in 4-dimensional space. It is easy to see that the number of
independent components reduces to 6 in 2-dimensional space and to 18 in 3-dimensional
space.

It may be more convenient to evaluate the Christoffel symbols by relating them to
the metric tensor than simply to use Eq. (22). As an initial step in this direction, we
define the Christoffel symbol of the first kind [ij, k] by

[ij, k] = gmkΓ
m
ij (34)

from which the symmetry [ij, k] = [ji, k] follows. Again, this [ij, k] is not a third-rank
tensor. Inserting Eq. (22) and applying the index-lowering transformation, we have

[ij, k] = gmkε
m · ∂εi

∂qj
= εk ·

∂εi
∂qj

(35)

Next, we write gij = εi · εj as we did earlier and differentiate it, identifying the result
with the aid of Eq. (35):

∂gij
∂qk

=
∂εi
∂qk

· εj + εi ·
∂εj
∂qk

= [ik, j] + [jk, i] (36)
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Changing the index set, we find

∂gik
∂qj

= [ij, k] + [jk, i] (37a)

∂gjk
∂qi

= [ik, j] + [ij, k] (37b)

Therefore, combining the last three equations, we find the identity

[ij, k] =
1

2

(
∂gik
∂qj

+
∂gjk
∂qi

− ∂gij
∂qk

)
(38)

Finally, using the definition of [ij, k] = gmkΓ
mij, we obtain

Γn
ij = gnk[ij, k] =

1

2
gnk

(
∂gik
∂qj

+
∂gjk
∂qi

− ∂gij
∂qk

)
(39)

=
1

2
gnk (∂jgik + ∂igjk − ∂kgij) (40)

where the last line contains the shorthand notation for the partial derivative.

The apparatus of this subsection becomes unnecessary in Cartesian coor-
dinates, because the basis vectors have vanishing derivatives, and the covari-
ant and ordinary partial derivatives then coincide.
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