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Geodesics can be defined either as extremal curves with the shortest possible path
length or as the curves that depart as little as possible from straightness (they are
“locally straight”).

1 The geodesic equation – 1

Here, we obtain the geodesic equation looking at geodesics as the trajectories that de-
part as little as possible from straightness. A point mass moving along a geodesic has its
velocity vector U = dX/dτ always tangent to the path. A geodesic is “locally straight”,
therefore we require that the velocity vector does not change locally, i.e., that the ab-
solute derivative vanishes

0 =
dU

dτ
=

d

dτ
(Uµεµ) =

dUµ

dτ
εµ + Uµdεµ

dτ
. (1)

Since
dεµ
dτ

=
∂εµ
∂xν

dxν

dτ
= UνΓσ

µνεσ (2)

we find
d2xµ

dτ
εµ +

dxµ

dτ

dxν

dτ
Γσ
µνεσ = 0 (3)

and finally, exchanging σ and µ

d2xµ

dτ
+

dxσ

dτ

dxν

dτ
Γµ
σν = 0 (4)

which is the geodesic equation.

The second term in the geodesic equation contains the basic information about cur-
vature: we see as the connection coefficients approach zero, and therefore we are close
to a flat spacetime, the solution of the geodesic equation approaches a straight line in
spacetime, which is the solution in SR.

2 The geodesic equation – 2

Here, we obtain the geodesic equation from the principle of least action applied to a free
particle (freely falling along a geodesic).
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2.1 Free-particle Lagrangian

The action must be a scalar invariant, and the only such scalar for a free particle is

S = −α

∫ b

a
ds (5)

where a, b are the initial and final position of the particle in spacetime, and α is a
constant pertaining to the particle under study.

In the rest system of the particle, the spacetime interval is proportional to the proper
time interval ds = cdτ . If dt′ is the time interval in the reference frame of the observer,
then we can write the spacetime interval in both systems as follows

ds2 = c2dt2 − (dx2 + dy2 + dz2) = c2dτ2 (6)

where (x, y, z) denotes the position of the particle in the observer’s reference frame,
therefore

dt = γdτ ≥ dτ. (7)

Writing the action in terms of Lagrangian, we find an equivalent expression for the
integral in the observer’s reference frame

S = −α

∫ t2

t1

ds = −α

∫ t2

t1

cdτ = −α

∫ t2

t1

c
√
1− β2dt =

∫ t2

t1

Ldt (8)

Expanding the square root at low β and using the Lagrangian for the free particle in
Newtonian mechanics L = mv2/2, we find that the last equality becomes

−αc

(
1− 1

2
β2

)
∼ 1

2
mv2 (9)

and dropping the constant which is nonrelevant in setting up the Lagrange equations,
we find

α
v2

2c
=

1

2
mv2 (10)

which shows that, in order to have agreement between the relativistic expression and
the classical expression, we must have α = mc, and that the expression for the action of
the free particle is

S = −mc

∫ b

a

√
gµνdxµdxν (11)

2.2 The geodesic equation from the Euler-Lagrange equations

Recall that, given a Lagrangian function L(qi, q̇i), the equations of motion can be ob-
tained from the Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (12)
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In this case we work with a reduced Lagrangian, where we drop the multiplicative
constants that play no role in the Lagrange equations

L(xα, ẋα) =

√
gµν

dxµ

dσ

dxν

dσ
=

dτ

dσ
(13)

which is calculated along a trajectory parameterized by the scalar parameter σ, where
the derivatives are computed with respect to this parameter, ẋµ = dxµ/dσ and

d

dσ

(
∂L

∂ẋα

)
− ∂L

dxα
= 0. (14)

In 4-dimensional space this corresponds to 4 equations in all.

The metric tensor changes along the curve, it only depends on xµ and is not depen-
dent on ẋµ. Therefore

∂L

∂ẋα
=

1

2
√

gµν ẋµẋν
(gµνδ

µ
αẋ

ν + gµν ẋ
µδνα) =

1

2L
(gαν ẋ

ν + gµαẋ
µ) =

1

L
gαµ

dxµ

dσ
= gαµ

dxµ

dτ

(15)

Similarly, we find

∂L

∂xα
=

1

2L
∂αgµν

dxµ

dσ

dxν

dσ
=

1

2
∂αgµν

dxµ

dσ

dxν

dτ
. (16)

Plugging these results in the Euler-Lagrange equations, we obtain

d

dσ

(
gαµ

dxµ

dτ

)
− 1

2
∂αgµν

dxµ

dσ

dxν

dτ
= 0, (17)

and after multiplying times dσ/dτ

d

dτ

(
gαµ

dxµ

dτ

)
− 1

2
∂αgµν

dxµ

dτ

dxν

dτ
= 0, (18)

which is the geodesic equation obtained from the Lagrangian formulation.

3 Equivalence of the two geodesic equations

We have found two apparently different geodesic equations; those found with the method
of parallel transport of the tangent vector are

d2xα

dτ2
+ Γα

µν ẋ
µẋν = 0, (19)

and the geodesic equations obtained from the relativistic Lagrangian of a free particle
are

d

dτ

(
gαµ

dxµ

dτ

)
− 1

2
∂αgµν ẋ

µẋν = 0; (20)
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In this section we show that they are equivalent.

Notice first that

d

dτ

(
gαµ

dxµ

dτ

)
=

dgαµ
dτ

dxµ

dτ
+ gαµ

dxµ

dτ
(21)

= ∂νgαµẋ
µẋν + gαµ

d2xµ

dτ2
, (22)

therefore

∂νgαµẋ
µẋν + gαµ

d2xµ

dτ2
− 1

2
∂αgµν ẋ

µẋν = 0. (23)

Next, we exchange µ and α

∂νgαµẋ
αẋν + gαµ

d2xα

dτ2
− 1

2
∂µgαν ẋ

αẋν = 0, (24)

rearrange the equation

d2xβ

dτ2
+

1

2
gβµ (∂νgαµ + ∂νgαµ − ∂µgαν) ẋ

αẋν = 0, (25)

exchange β and α

d2xα

dτ2
+

1

2
gαµ (∂νgβµ + ∂νgβµ − ∂µgβν) ẋ

βẋν = 0, (26)

and finally, β and µ

d2xα

dτ2
+

1

2
gαβ (∂νgβµ + ∂νgβµ − ∂βgµν) ẋ

µẋν = 0 (27)

Expanding the parenthesis, the second term is ∂νgβµẋ
µẋν = ∂µgβν ẋ

µẋν (exchanging µ
and ν), and therefore

d2xα

dτ2
+

1

2
gαβ (∂νgβµ + ∂µgβν − ∂βgµν) ẋ

µẋν = 0, (28)

and recalling that

Γi
jk =

1

2
giℓ

(
∂gℓk
∂xj

+
∂gℓj
∂xk

−
∂gjk
∂xℓ

)
we find the first version of the geodesic equation

d2xα

dτ2
+

1

2
Γα
µν ẋ

µẋν = 0, (29)

and conclude the proof of the equivalence.
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