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1 Introduction

We transport a vector by keeping it parallel as we move from one point to a close one
on a manifold. Parallel transport in flat space is trivial, as we do it following a closed
loop, the transported vector overlaps the initial one when we close the loop (left panel
of Fig. 1). The situation is much less trivial on a manifold with curvature, the right
panel of Fig. 1 illustrates what happens on the surface of a sphere, we see that the
transported vector no longer overlaps the initial one. Moreover, in curved space the final
result depends on the path taken. This last remark has a stunning consequence, that in
a curved spacetime we cannot really “compare velocities” at different spacetime points,
because a comparison means that one of the two vectors must be “parallel transported”
to the other one and this depends on the path.
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Figure 1: Left panel: parallel transport of a vector along a closed loop in flat space.
Right panel: parallel transport of a vector along a closed loop on a sphere.

Parallel transport is closely connected to the curvature of a Riemann manifold. In
this handout we explore these concepts.
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2 Equation of parallel transport

Parallel transport generalizes to curved space the idea that we keep a vector constant
as we move along a path xµ(σ). For a generic tensor in flat space this means

d

dσ
Tµ1,...,µk
ν1,...,νℓ

=
dxµ

dσ

∂

∂xµ
Tµ1,...,µk
ν1,...,νℓ

= 0 (1)

and we generalize the idea to curved spaces by replacing the partial derivative with the
directional covariant derivative

D

dσ
=

dxµ

dσ
∇µ (2)

so that the equation of parallel transport of a tensor becomes

D

dσ
Tµ1,...,µk
ν1,...,νℓ

=
dxµ

dσ
∇µT

µ1,...,µk
ν1,...,νℓ

= 0 (3)

In the case of a contravariant vector, the equation becomes

dxµ

dσ
∇µV

α =
dxµ

dσ

(
∂V α

∂xµ
+ Γα

µβV
β

)
=

dV α

dσ
+ Γα

µβ

dxµ

dσ
V β = 0 (4)

2.1 Parallel transport of the metric tensor

The metric tensor always satisfies the parallel transport equation. This can be seen as
follows:

∇σgµν = ∂σgµν − gλνΓ
λ
µσ − gµλΓ

λ
σν

= ∂σgµν − gλν
1

2
gλα (∂µgασ + ∂σgµα − ∂αgµσ)− gµλ

1

2
gλα (∂νgασ + ∂σgαν − ∂αgσν)

= ∂σgµν −
1

2
δαν (∂µgασ + ∂σgµα − ∂αgµσ)−

1

2
δαµ (∂νgασ + ∂σgαν − ∂αgσν) (5)

= ∂σgµν −
1

2
(∂µgνσ + ∂σgµν − ∂νgµσ)−

1

2
(∂νgµσ + ∂σgµν − ∂µgσν)

= 0

This means that
D

dσ
gαβ =

dxµ

dσ
∇µgαβ = 0 (6)

and the metric tensor always satisfies the parallel transport equation.
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2.2 Parallel transport of the inner product of two parallel-transported
vectors

The inner product of two contravariant parallel-transported vectors is defined by gµνA
µBν ,

therefore

D

dσ
(gµνA

µBν) =

(
D

dσ
gµν

)
AµBν + gµν

(
D

dσ
Aµ

)
Bν + gµνA

µ

(
D

dσ
Bν

)
= 0 (7)

because each term vanishes. This means that parallel transport conserves the norm
of parallel-transported vectors, their orthogonality, etc.

2.3 The geodesic equation as a consequence of parallel transport

The tangent vector to the path xµ(σ) is dxµ/dσ, therefore the equation for parallel
transport is just

d2xα

dσ2
+ Γα

µβ

dxµ

dσ

dxβ

dσ
= 0 (8)

which is the geodesic equation.

2.4 The local flatness theorem

Consider a transformation to primed coordinates that transforms the metric tensor as
follows

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ, (9)

here we prove that it is possible to find a transformation such that g′µν = ηµν and
∂′
αg

′
µν = 0.

We start by series expanding the 16 elements of the Jacobian matrix at a spacetime
point P , relative to the primed coordinates

∂xα

∂x′µ
≈ aαµ + bαµλ∆x′λ + cαµλσ∆x′λ∆x′σ (10)

where

∆x′µ = x′µ − [x′µ]P (11)

aαµ =

[
∂xα

∂x′µ

]
P

(12)

bαµλ =

[
∂

∂x′λ

(
∂xα

∂x′µ

)]
P

=

[
∂2xα

∂x′λ∂x′µ

]
P

(13)

cαµλσ =
1

2

[
∂2

∂x′λ∂x′σ

(
∂xα

∂x′µ

)]
P

=
1

2

[
∂3xα

∂x′λ∂x′σ∂x′µ

]
P

(14)
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The choice of the coordinate transformation is free, and therefore we are free to choose
the a, b and c coefficients: we choose them in such a way that g′µν = ηµν and ∂′

αg
′
µν = 0.

To start with, we count the number of independent values for each set of coefficients:

• there are no symmetries in the indexes of the aαµs, therefore here we have 16
independent values,

• the bαµλs have an obvious exchange symmetry between the covariant indexes. This
means that there are 40 independent values,

• again, the cαµλσs have 80 distinct combination of indexes.

Next, we expand gαβ in the primed coordinate system

gαβ = [gαβ]P +
[
∂′
γgαβ

]
P
∆x′γ +

1

2

[
∂′
γ∂

′
δgαβ

]
P
∆x′γ∆x′δ (15)

This means that we can write

g′µν ≈
(
aαµ + bαµλ1

∆x′λ1 + cαµλ1σ1
∆x′λ1∆x′σ1

)
×
(
aβν + bβνλ2

∆x′λ2 + cβνλ2σ2
∆x′λ2∆x′σ2

)
×
(
[gαβ]P +

[
∂′
γgαβ

]
P
∆x′γ +

1

2

[
∂′
γ∂

′
δgαβ

]
P
∆x′γ∆x′δ

)
≈ aαµa

β
ν [gαβ]P +

(
aβν b

α
µγ [gαβ]P + aαµb

β
νγ [gαβ]P + aαµa

β
ν

[
∂′
γgαβ

]
P

)
∆x′γ

+
(
aαµc

β
νγδ[gαβ]P + aβν c

α
µγδ[gαβ]P + terms with a and b only

)
∆x′γ∆x′δ (16)

Now consider the first term in the r.h.s. of Eq. (16); it depends on a alone, and it
determines the value of g′µν at the spacetime point P. Since g′µν has only 10 independent
elements, we see that the degrees of freedom carried by a are more than enough to let
us choose a in such a way that [g′µν ]P = ηµν . The 6 remaining degrees of freedom can
be used for local rotations and Lorentz boosts.

The next question is, is this flatness stable enough to guarantee that in a neigh-
bourhood of P the metric tensor does not change much and we can effectively say that
this neighbourhood is locally flat? The ∆x′γ-dependent term can be tuned with the b

coefficients, and it should yield the
[
∂′
γg

′
αβ

]
P

term in the expansion of g′αβ. Since this

term corresponds to 40 independent coefficients, we have just enough freedom in the

choice of coefficients to guarantee that we can set
[
∂′
γg

′
αβ

]
P

= 0. This means that

we can choose coordinates such that the coordinate frame appears as locally
flat in a small neighbourhood, i.e., a Local Inertially Frame (LIF).

Can we play the same trick with local curvature (represented by the next term,
dependent on ∆x′γ∆x′δ)? At this point we have exhausted the degrees of freedom
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provided by a and b and we are left with just c (80 degrees of freedom). This is used
to determine the next term in the expansion of g′µν , which corresponds to 100 degrees
of freedom, and we see that now we do not have enough freedom to choose a coordinate
system that leads to a local vanishing of curvature.

Finally, we find that the existence of the LIF is fully compatible with the
earlier equality (5), which is also related with the symmetry of the Christoffel
symbols: these results are all strictly interrelated.

3 The Riemann tensor

In the first section we noticed that curvature produces a mismatch in the parallel trans-
port of a vector around a loop. Clearly, to characterize local curvature, we should
consider small, infinitesimal loops. Moreover, it is not strictly necessary to get back at

3.6 The Riemann Curvature Tensor

3.6 THE RIEMANN CURVATURE TENSOR

Having set up the machinery of covariant derivatives and parallel transport, we are
at last prepared todiscuSS curvature proper. The curvature is quantified by the Rie-
mann tensor, which is derived from the connection. The idea behind this measure
of curvature is that we know what we mean by "flatness" of a connectionthe
conventional (and usually implicit) Christoffel connection associated with a Eu-
clidean or Minkowskian metric has a number of properties that can be thought of
as different manifestations of flatness. These include the fact that parallel trans-
port around a closed loop leaves a vector unchanged, that covariant derivatives
of tensors commute, and that initially parallel geodesics remain parallel. As we
shall see, the Riemann tensor arises when we study how any of these properties
are altered in more general contexts

We have already argued, using the two-sphere as an example, that parallel
transport of a vector around a closed loop in a curved space will lead to a transfor-
mation of the vector. The resulting transformation depends on the total curvature
enclosed by the loop: it would be more useful to have a local description of the
curvature at each point, which is what the Riemann tensor is supposed to provide.
One conventional way to introduce the Riemann tensor, therefore, is to consider
parallel transport around an infinitesimal loop. We are not going to do that here,
but take a more direct route. Nevertheless, even without working through the de-
tails, it is possible to see what form the answer should take. Since spacetime looks
flat in sufficiently small regions, our loop will be specified by two (infinitesimal)
vectors A and B'. We imagine parallel transporting a vector VE by first mov-
ing it in the direction of A", then along B", then backward along A" and B"
to return to the starting point, as shown in Figure 3.5. We know the action of
parallel transport is independent of coordinates, so there should be some tensor

i ls Lne o thattellsushowthevectorchangeswhen itcomesback to its startingpoint; it
tovs will be a lineartransformationon avector,andthereforeinvolve oneupperand
ot arls o one lower index. But it will alsodependon the two vectors A and B that de-

eoe o finetheloop;thereforethereshouldbetwoadditionallowerindicestocontract
with A and B'. Furthermore, the tensor should be antisymmetric in these two
indices, since interchanging the vectors corresponds to traversing the loop in the
opposite direction, and should give the inverse of the original answer. This is
consistent with the fact that the transformation should vanish if A and B are the
same vector. We therefore expect that the expression for the change 8VP experi-
enced by this vector when parallel transported around the loop should be of the

B

A

FIGURE 3.5 An infinitesi-
mal loop defined by two vec-
tors A and B".

form

8VP = R°ou V° A"B', .109)

where Ropy is a (1, 3) tensor known as the Riemann tensor (or simply curva-
ture tensor). It is antisymmetric in the last two indices:

Rauv -Rov (3.110)d blsd

121

122 Chapter 3 Curvature

Ofcourse, if (3.109) is taken as a definition of the Riemann tenso
needs to bechosen for the ordering of the indices. There is noagre
what this convention should be, so be careful.

Knowing what we do about parallel transport, we could very ca
the necessary manipulations to see what happens to the vector ur
tion, and the result would be a formula for the curvature tensor
connectioncoefficients. It is much quicker, however, to consider
tion, the commutator of two covariant derivatives. The relationsh
and parallel transport around a loop should be evident; the cova
of a tensor in a certain direction measures how much the tensor
to what it would have been if it had been parallel transported, sin
derivative of a tensor in a direction along which it is parallel trar
The commutator of two covariant derivatives, then, measures th
tween parallel transporting the tensor first one way and then the
opposite ordering, as shown in Figure 3.6.

The actual computation is very straightforward. Considering a
we take

(Vp.V,]VP= V,V, vP- VVve
= 8(V,VP)- r,V Ve+rhoV,v° - (u e
=840,VP+ (0,r)V° + rRo,V° - T,a, V
+rho,V°+ rr V-(u >v)
=(04Tie-8rpo+ , rỳg –rrà)V-DÀ

In the last stepwehave relabeled some dummy indices and elimi
that cancel when antisymmetrized. We recognize that the antis
nection coefficients in the last term are simply one-half times
and that the left hand side is manifestly a tensor; therefore the ex
theses must be a tensor itself. We write

[V. V]vP =Rlopyvo – T"VVe,
where the Riemann tensor is identified as

Rouy= oro -O,rho+ TTvg -
Notice a number of sl.

FIGURE 3.6 The commu-
tator of two covariant deriva-
tives.Figure 2: Left panel: a small loop defined by two (small) vectors A and B. Right panel:

operators associated with parallel transport along the loop sides.

the origin of the loop, we could also move along “parallelogram edges” like those in the
left panel of figure 2: the parallelogram is equivalent to a loop, but it lets us clearly
display the difference between apparently equivalent paths to reach the same endpoint.
We write this difference as follows

δV ρ = Rρ
σµνV

σAµBν (17)

because in a small loop we expect the difference to be proportional to the vector size,
and to the distance over which we transport the vector (i.e., along A and B). The
set of proportionality constants Rρ

σµν also depend on the directions of these vectors.
Because of the quotient rule, Rρ

σµν is itself a tensor, known as the Riemann tensor.
Changing the direction of the loop, the difference must change sign, therefore Rρ

σµν must
be antisymmetric with respect to µ and ν.

More specifically, from the discussion in the previous section, we see that the covari-
ant derivative is the proper operator to characterize differences in the parallel transport
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of a vector any given direction on the manifold, and the order with which we take parallel
transport defines a commutator (left panel in figure 2). Here, we expand the commutator

[∇µ,∇ν ]V
ρ = ∇µ∇νV

ρ −∇ν∇µV
ρ (18)

= ∂µ(∇νV
ρ) + Γρ

µλ∇νV
λ − Γσ

µν∇σV
ρ − (µ ↔ ν) (19)

= ∂µ(∂νV
ρ + Γρ

νλV
λ) + Γρ

µλ(∂νV
λ + Γλ

νσV
σ)− Γσ

µν(∂σV
ρ + Γρ

σλV
λ)− (µ ↔ ν)

(20)

= ∂µ∂νV
ρ + (∂µΓ

ρ
νλ)V

λ + Γρ
νλ∂µV

λ + Γρ
µλ∂νV

λ + Γρ
µλΓ

λ
νσV

σ

− Γσ
µν∂σV

ρ − Γσ
µνΓ

ρ
σλV

λ

−
(
∂ν∂µV

ρ + (∂νΓ
ρ
µλ)V

λ + Γρ
µλ∂νV

λ + Γρ
νλ∂µV

λ + Γρ
νλΓ

λ
µσV

σ

−Γσ
µν∂σV

ρ − Γσ
µνΓ

ρ
σλV

λ
)

(21)

= (∂µΓ
ρ
νλ)V

λ − (∂νΓ
ρ
µλ)V

λ + Γρ
µλΓ

λ
νσV

σ − Γρ
νλΓ

λ
µσV

σ (22)

=
(
∂µΓ

ρ
νλ − ∂νΓ

ρ
µλ + Γρ

µσΓ
σ
νλ − Γρ

νσΓ
σ
µλ

)
V λ (23)

(this derivation is given as in [1]). Thus, we see that

[∇µ,∇ν ]V
ρ = Rρ

λµνV
λ (24)

where the Riemann tensor is

Rρ
λµν = ∂µΓ

ρ
νλ − ∂νΓ

ρ
µλ + Γρ

µσΓ
σ
νλ − Γρ

νσΓ
σ
µλ (25)

Moreover, it is quite obvious that the Riemann tensor is antisymmetric with respect to
the last two indexes.

Notice also that

• If a coordinate system exists in which the components of the metric are constant,
then the Riemann tensor vanishes

• If the Riemann tensor vanishes, then we can construct a coordinate system where
the metric is constant.

4 Contractions of the Riemann tensor

There are two useful contractions of the Riemann tensor:

the Ricci tensor:

Rµν = Rα
µνα = ∂αΓ

α
µν − ∂µΓ

α
αν + Γα

ασΓ
σ
µν − Γα

µσΓ
σ
αν (26)

the Ricci scalar: this is the trace of the Ricci tensor

R = gµνRµν = Rν
ν (27)
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