Indipendent components of the Riemann and Ricci tensors

Edoardo Milotti

October 31, 2023

The Riemann curvature tensor has 4 indexes, therefore it has 256 components. However not all the components are different, and here we count the actual number of different components.

Recall the identities

$$
\begin{equation*}
R_{\mu \alpha \beta \gamma}=-R_{\alpha \mu \beta \gamma}=-R_{\mu \alpha \gamma \beta}=R_{\beta \gamma \mu \alpha}, \tag{1}
\end{equation*}
$$

(the Riemann tensor is antisymmetric with respect to the exchange of both the first pair of indexes and the second pair of indexes, while it does not change in a double exchange $1 \leftrightarrow 3,2 \leftrightarrow 4)$ and

$$
\begin{equation*}
R_{\mu \alpha \beta \gamma}+R_{\mu \beta \gamma \alpha}+R_{\mu \gamma \alpha \beta}=0 \tag{2}
\end{equation*}
$$

(the cyclic identity).
The first antisymmetry means that if $\alpha=\mu$ then $R_{\mu \alpha \beta \gamma}=0$. In order to obtain a nonzero value there are 4 choices for the first index and 3 for the second one. Since order does not matter, there are in all 6 different pairs. The same holds for the second pair of indexes. This means that there are potentially 36 nonzero independent components.

However, the third equality $R_{\mu \alpha \beta \gamma}=R_{\beta \gamma \mu \alpha}$ means that one can exchange the first pair with the second pair without altering the value of the coefficient (in practice, the matrix of values indexed by the $\mu \alpha$ pair for the rows and the $\beta \gamma$ pair for the columns is symmetrical), and therefore there are at most $n(n+1) / 2=6 \times 7 / 2=21$ independent values (recall that $n=6$ is the number of rows and columns of this matrix).

We still have to use the last identity

$$
\begin{equation*}
R_{\mu \alpha \beta \gamma}+R_{\mu \beta \gamma \alpha}+R_{\mu \gamma \alpha \beta}=0, \tag{3}
\end{equation*}
$$

where we can raise the first index to find

$$
\begin{equation*}
R_{\alpha \beta \gamma}^{\mu}+R_{\beta \gamma \alpha}^{\mu}+R_{\gamma \alpha \beta}^{\mu}=0 . \tag{4}
\end{equation*}
$$

However, it is easy to see that whenever two indexes are equal, this is identically null simply because of the previous identities (Exercise: verify this statement). Therefore, the only additional constraint is

$$
\begin{equation*}
R_{0123}+R_{0231}+R_{0312}=0 \tag{5}
\end{equation*}
$$

and this brings down to 20 the total number of independent components of the Riemann curvature tensor.

Now, note that by contracting the cyclic identity over μ and γ, we find

$$
\begin{equation*}
R_{\alpha \beta \mu}^{\mu}+R_{\beta \mu \alpha}^{\mu}+R_{\mu \alpha \beta}^{\mu}=0 \tag{6}
\end{equation*}
$$

Since the Riemann tensor is antisymmetric with respect to the exchange of the first pair of indices the last term of this identity vanishes and we are left with

$$
\begin{equation*}
R_{\alpha \beta \mu}^{\mu}+R_{\beta \mu \alpha}^{\mu}=0 \tag{7}
\end{equation*}
$$

and because of the antisymmetry of the last two indices $R_{\alpha \beta \mu}^{\mu}=-R_{\alpha \mu \beta}^{\mu}$ we find

$$
\begin{equation*}
R_{\alpha \mu \beta}^{\mu}=R_{\beta \mu \alpha}^{\mu} \tag{8}
\end{equation*}
$$

and finally, recalling the definition of the Ricci tensor

$$
\begin{equation*}
R_{\mu \nu}=R_{\mu \alpha \nu}^{\alpha} \tag{9}
\end{equation*}
$$

we find

$$
\begin{equation*}
R_{\alpha \beta}=R_{\beta \alpha} \tag{10}
\end{equation*}
$$

i.e., the Ricci tensor is a rank- 2 symmetric tensor and therefore it has only 10 independent components

