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We start from the geodesic equations

d2xa

du2
+ Γa

bc

dxb

du

dxc

du
= 0, (1)

where the u is the curve parameter and xa = xa(u) (latin indexes, because these equa-
tions hold true for any Riemann manifold). Next, we consider two neighboring geodesics
identified by the coordinates xa(u) and x̃a(u) and their (small) difference – the geodesic
deviation – at given u, ξa(u) = x̃a(u)− xa(u) (see Fig 1).

CONCEPT SUMMARY

(a) (b)

freely-
falling
frame
nearr the
carth

carth

FIG. 1.4 (a) Because the gravitational field of the earth (indeed, any gravitating object) is non-
uniform, off-center floating balls in a freely falling frame will experience small accelerations
relative to the frame's center of mass. (b) Such accelerations are not observed in a frame float-
ing in deep space: floating balls initially at rest remain truly at rest.

To predict what happens, let us retreat for the moment back into the Newtonian
picture (which will predict the correct behavior even if it does not provide the correct
interpretation). In that picture, the room's center of mass falls toward the earth with a
certain acceleration. The ball near the ceiling is just a bit farther from the earth's center
than the room's center of mass, so it experiences a slightly smaller acceleration, just
as the ball near the floor experiences a slightly larger acceleration. The balls near the
walls accelerate toward the earth's center and thus along lines angled slightly inward
with respect to the direction along which the room accelerates. So as time passes, we
will observe the top and bottom balls to accelerate away from the room's center, while
the side balls will accelerate toward the room's center. This is not the behavior that
we would observe in a frame floating in deep space: in such a frame, the balls would
remain strictly at rest.

The relative accelerations of off-center free bodies, then, is something we do ob-
serve in an inertial (freely falling) frame near a gravitating object, but not in an inertial
frame in deep space. These relative accelerations therefore represent a frame-indepen-
dent (and thus real) indication that we must be near a gravitating object.

We call this aspect of gravity the tidal effect of a gravitational field, because (as
Newton himself first realized) this effect explains tides on the earth's surface. Note that
we can consider the earth to be a frame freely falling in the moon's gravitational field.
Like the balls in our freely falling room, ocean waters on the sides of the earth closest to
and farthest from the moon will accelerate away from the earth's center and thus bulge
outward, while ocean waters on the sides will press inward. This explains the 12-hour
tidal variation of the depth of the ocean.

Spacetime Is Curved. How do we interpret these tidal effects from the perspective of
general relativity? Figure 1.5 shows a spacetime graph of the trajectories of the two side
balls in our falling-room experiment. Since these balls are initialy at rest with respect
to each other, their paths in spacetime are initially parallel (they remain at an initially
constant separation as time passes). As time progresses, however, they eventually begin
to move toward each other with increasing speed, so the paths curve toward cach other
as shown.
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FIG. I.5 Plotted in spacetime, the geo-
desics that the balls in figure 1.4 follow
(as measured in the freely-falling
frame) are initially parallel (the bals
have initially constant separation),
but gradually bend toward each other
(because their separation eventually
decreases). This bending of initial
parallel lines signals that the underly-
ing spacetime is curved.
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Figure 1: Two geodesics in spacetime with the geodesic deviation marked at two different
values of u (proportional to proper time). The spacetime points A, B, C, and D mark
a loop, therefore it is reasonable to expect that an equation that describes the geodesic
deviation ξa has some connection with the Riemann tensor.

When we consider the geodesic equation for x̃a(u)

d2x̃a

du2
+ Γ̃a

bc

dx̃b

du

dx̃c

du
= 0, (2)
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where Γ̃a
bc is evaluated at x̃a(u) = xa(u) + ξa(u), and subtract eq. (1) from eq. (2), we

find
d2ξa

du2
=

d2x̃a

du2
− d2xa

du2
= −

(
Γ̃a
bc

dx̃b

du

dx̃c

du
− Γa

bc

dxb

du

dxc

du

)
. (3)

We expand the Christoffel symbol Γ̃a
bc to first order in ξa (the geodesic deviation is

assumed to be small) as follows:

Γ̃a
bc ≈ Γa

bc + ∂dΓ
a
bcξ

d, (4)

then, substituting in eq. (3) and neglecting terms that are superlinear in ξ and its
derivatives, we find

d2ξa

du2
= −

(
Γa
bc + ∂dΓ

a
bc ξ

d
) d(xb + ξb)

du

d(xc + ξc)

du
+ Γa

bc

dxb

du

dxc

du
(5)

≈ −
(
Γa
bc + ∂dΓ

a
bc ξ

d
)[

dxb

du

dxc

du
+ ξ̇b

dxc

du
+ ξ̇c

dxb

du

]
+ Γa

bc

dxb

du

dxc

du
(6)

≈ −Γa
bcξ̇

bdx
c

du
− Γa

bcξ̇
cdx

b

du
− ∂dΓ

a
bc ξ

ddx
b

du

dxc

du
(7)

≈ −Γa
bcξ̇

bẋc − Γa
bcξ̇

cẋb − ∂dΓ
a
bc ξ

dẋbẋc (8)

Next, adding to both sides the expression

d

du
Γa
bcξ

bẋc =

(
d

du
Γa
bc

)
ξbẋc+Γa

bcξ̇
bẋc+Γa

bcξ
bẍc = ∂dΓ

a
bcξ

bẋdẋc+Γa
bcξ̇

bẋc+Γa
bcξ

bẍc (9)

where we use the chain rule, Eq. (8) can be rearranged as follows:

d

du

(
ξ̇a + Γa

bcξ
bẋc

)
− ∂dΓ

a
bc ξ

bẋcẋd − Γa
bcξ

bẍc + Γa
bcξ̇

cẋb + ∂dΓ
a
bc ξ

dẋbẋc = 0. (10)

Now notice that the geodesic equation (1) can also be written in the form

ẍc = −Γc
deẋ

dẋe (11)

which holds on the geodesic: we use this equation to get rid of the second derivative ẍc,
so that eq. (10) becomes

d

du

(
ξ̇a + Γa

bcξ
bẋc

)
− ∂dΓ

a
bc ξ

bẋcẋd + Γa
bcΓ

c
deξ

bẋdẋe + Γa
bcξ̇

cẋb + ∂dΓ
a
bc ξ

dẋbẋc = 0. (12)

We recall here the definition of the absolute derivative

Dva

du
= v̇a + Γa

bcv
bẋc (13)
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and we remark that the term enclosed in the parenthesis on the l.h.s. of Eq. (12) is the
absolute derivative of ξ. We also note that

d

du

(
ξ̇a + Γa

bcξ
bẋc

)
=

D

du

(
ξ̇a + Γa

bcξ
bẋc

)
− Γa

de

(
ξ̇d + Γd

bcξ
bẋc

)
ẋe (14)

=
D2ξa

du2
− Γa

de

(
ξ̇d + Γd

bcξ
bẋc

)
ẋe. (15)

With this rearrangement of the first term, eq. (12) becomes

D2ξa

du2
−Γa

de

(
ξ̇d + Γd

bcξ
bẋc

)
ẋe−∂dΓ

a
bc ξ

bẋcẋd+Γa
bcΓ

c
deξ

bẋdẋe+Γa
bcξ̇

cẋb+∂dΓ
a
bc ξ

dẋbẋc = 0,

(16)
or also

D2ξa

du2
−Γa

deξ̇
dẋe−Γa

deΓ
d
bcξ

bẋcẋe−∂dΓ
a
bc ξ

bẋcẋd+Γa
bcΓ

c
deξ

bẋdẋe+Γa
bcξ̇

cẋb+∂dΓ
a
bc ξ

dẋbẋc = 0.

(17)
Taking into account the symmetry of the lower indexes of the Christoffel symbols and
with the proper substitutions of indexes in the contractions, we see that the second and
the sixth term in eq. (17) (marked in red) have the same value and opposite sign, and
eq. (17) simplifies to

D2ξa

du2
− Γa

deΓ
d
bcξ

bẋcẋe − ∂dΓ
a
bc ξ

bẋcẋd + Γa
bcΓ

c
deξ

bẋdẋe + ∂dΓ
a
bc ξ

dẋbẋc = 0, (18)

and after rearranging the terms and changing the names of indices in contractions

D2ξa

du2
+
(
∂bΓ

a
de ξ

bẋdẋe − ∂dΓ
a
be ξ

bẋdẋe + Γa
bcΓ

c
deξ

bẋdẋe − Γa
ceΓ

c
bdξ

bẋdẋe
)
= 0, (19)

i.e.,
D2ξa

du2
+ (∂bΓ

a
de − ∂dΓ

a
be + Γa

bcΓ
c
de − Γa

ceΓ
c
bd) ξ

bẋdẋe = 0 (20)

Recalling the definition of the Riemann curvature tensor

Rd
abc = ∂bΓ

d
ac − ∂cΓ

d
ab + Γe

acΓ
d
be − Γe

abΓ
d
ce, (21)

we see that eq. (20) reduces to

D2ξa

du2
+Ra

dbeξ
bẋdẋe = 0. (22)

which is the equation of geodesic deviation.
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