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We start from the geodesic equations
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where the u is the curve parameter and 2% = z%(u) (latin indexes, because these equa-
tions hold true for any Riemann manifold). Next, we consider two neighboring geodesics
identified by the coordinates 2%(u) and Z%(u) and their (small) difference — the geodesic
deviation - at given u, {%(u) = 2%(u) — z%(u) (see Fig[l).
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Figure 1: Two geodesics in spacetime with the geodesic deviation marked at two different
values of u (proportional to proper time). The spacetime points A, B, C, and D mark
a loop, therefore it is reasonable to expect that an equation that describes the geodesic
deviation £ has some connection with the Riemann tensor.

When we consider the geodesic equation for z%(u)
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where T¢_ is evaluated at #%(u) = 2%(u) + £%(u), and subtract eq. from eq. (2), we
find
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We expand the Christoffel symbol f‘gc to first order in £* (the geodesic deviation is
assumed to be small) as follows:

~gc ~ Fgc + adrgc£d> (4)

then, substituting in eq. and neglecting terms that are superlinear in £ and its
derivatives, we find
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Next, adding to both sides the expression
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where we use the chain rule, Eq. can be rearranged as follows:
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Now notice that the geodesic equation can also be written in the form
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which holds on the geodesic: we use this equation to get rid of the second derivative Z€,
so that eq. becomes
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We recall here the definition of the absolute derivative
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and we remark that the term enclosed in the parenthesis on the l.h.s. of Eq. is the
absolute derivative of £&. We also note that
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With this rearrangement of the first term, eq. becomes
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Taking into account the symmetry of the lower indexes of the Christoffel symbols and
with the proper substitutions of indexes in the contractions, we see that the second and
the sixth term in eq. (marked in red) have the same value and opposite sign, and

eq. simplifies to
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and after rearranging the terms and changing the names of indices in contractions
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Recalling the definition of the Riemann curvature tensor

Rd = 8brgc - acl—‘gb + FZCPge - FZde (21)

abc ce’

we see that eq. reduces to
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which is the equation of geodesic deviation.



