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Chapter 14

Measurement of Classical Gravitation Fields
Felix Pirani

Because of the principle of equivalence, one cannot ascribe a direct phys-
ical interpretation to the gravitational field insofar as it is characterized
by Christoffel symbols FLVLP. One can, however, give an invariant inter-
pretation to the variations of the gravitational field. These variations are
described by the Riemann tensor; therefore, measurements of the relative
acceleration of neighboring free particles, which yield information about
the variation of the field, will also yield information about the Riemann
tensor.

Now the relative motion of free particles is given by the equation of
geodesic deviation
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Here n* is the infinitesimal orthogonal displacement from the (geodesic)
worldline § of a free particle to that of a neighboring similar particle.
v is the 4-velocity of the first particle, and T the proper time along .
If now one introduces an orthonormal frame on {, v** being the timelike
vector of the frame, and assumes that the frame is parallelly propagated
along ¢ (which insures that an observer using this frame will see things in
as Newtonian a way as possible) then the equation of geodesic deviation
(14.1) becomes
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Here n“ are the physical components of the infinitesimal displacement and

RG,0 some of the physical components of the Riemann tensor, referred to
the orthonormal frame.
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By measurements of the relative accelerations of several different pairs
of particles, one may obtain full details about the Riemann tensor. One



can thus very easily imagine an experiment for measuring the physical
components of the Riemann tensor.
Now the Newtonian equation corresponding to (14.2) is

9’n¢ N 9%
912 " dxagx !
It is interesting that the empty-space field equations in the Newtonian
and general relativity theories take the same form when one recognizes
the correspondence R, ~ (h‘i—za"xb between equations (14.2) and (14.3),
for the respective empty-space equations may be written Rf , = 0 and
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= 0. (Details of this work are in the course of publication in Acta

BONDI: Can one construct in this way an absorber for gravitational en-
ergy by inserting a ‘;—Z term, to learn what part of the Riemann tensor
would be the energy producing one, because it is that part that we want
to isolate to study gravitational waves?

PIRANTI: I have not put in an absorption term, but I have put in a “spring.”
You can invent a system with such a term quite easily.

LICHNEROWICZ: Is it possible to study stability problems for n?

PIRANTI: It is the same as the stability problem in classical mechanics,
but I haven’t tried to see for which kind of Riemann tensor it would blow

up.



Chapter 27
An Expanded Version of the Remarks by R.P. Feyn-
man on the Reality of Gravitational Waves!

I think it is easy to see that if gravitational waves can be created they can
carry energy and can do work. Suppose we have a transverse-transverse
wave generated by impinging on two masses close together. Let one mass A
carry a stick which runs past touching the other B. I think I can show that
the second in accelerating up and down will rub the stick, and therefore
by friction make heat. I use coordinates physically natural to A, that is
so at A there is flat space and no field (what are they called, “natural
coordinates”?). Then Pirani at an earlier section gave an equation for the
notion of a nearby particle, vector distance 1 from origin A, it went like,
to 1% order in n
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R is the curvature tensor calculated at A. Now we can figure R directly, it
is not reasonable by coordinate transformation for it is the real curvature.
It does not vanish for the transverse-transverse gravity wave but oscillates
as the wave goes by. So, 1 on the RHS is sensibly constant, so the equation
says the particle vibrates up and down a little (with amplitude proportional
to how far it is from A on the average, and to the wave amplitude.) Hence
it rubs the stick, and generates heat.

I heard the objection that maybe the gravity field makes the stick
expand and contract too in such a way that there is no relative motion of
particle and stick. But this cannot be. Since the amplitude of B’s motion
is proportional to the distance from A, to compensate it the stick would
have to stretch and shorten by certain ratios of its own length. Yet at
the center it does no such thing, for it is in natural metric - and that
means that the lengths determined by size of atoms etc. are correct and
unchanging at the origin. In fact that is the definition of our coordinate
system. Gravity does produce strains in the rod, but these are zero at the



center for g and its gradients are zero there. I think: any changes in rod
lengths would go at least as 1 and not as 7 so surely the masses would
rub the rod.

Incidentally masses put on opposite side of A go in opposite directions.
If T use 4 weights in a cross, the motions at a given phase are as in the
figure:
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Figure 27.1

Thus a quadrupole moment is generated by the wave.

Now the question is whether such a wave can be generated in the
first place. First since it is a solution of the equations (approx.) it can
probably be made. Second, when I tried to analyze from the field equations
just what happens if we drive 4 masses in a quadrupole motion of masses
like the figure above would do - even including the stress-energy tensor of
the machinery which drives the weights, it was very hard to see how one
could avoid having a quadrupole source and generate waves. Third my
instinct is that a device which could draw energy out of a wave acting on
it, must if driven in the corresponding motion be able to create waves of
the same kind. The reason for this is the following: If a wave impinges
on our “absorber” and generates energy - another “absorber” place in the
wave behind the first must absorb less because of the presence of the first,
(otherwise by using enough absorbers we could draw unlimited energy
from the waves). That is, if energy is absorbed the wave must get weaker.
How is this accomplished? Ordinarily through interference. To absorb, the
absorber parts must move, and in moving generate a wave which interferes
with the original wave in the so-called forward scattering direction, thus
reducing the intensity for a subsequent absorber. In view therefore of
the detailed analysis showing that gravity waves can generate heat (and
therefore carry energy proportional to R? with a coefficient which can be
determined from the forward scattering argument). I conclude also that
these waves can be generated and are in every respect real.



