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Michelson interferometers
(the main reference for these slides is the paper by Black and Gutenkunst, An introduction to signal extraction in 
interferometric gravitational wave detectors, Am. J. Phys. 71 (2003) 365)

arms, reflect off the end mirrors, and recombine to interfere
back at the beam splitter.20 The light emitted at the observa-
tion or antisymmetric port provides a measure of the differ-
ence between the lengths of the interferometer’s arms. !The
symmetric port, from which light returns to the laser, also
contains information about the relative arm lengths. Conser-
vation of energy requires that the power coming out of the
symmetric and antisymmetric ports, along with any power
lost in the instrument, accounts for all of the input power."
Let us consider quantitatively the response of a simple

Michelson interferometer to a gravitational wave. It is not
difficult to derive an expression for the electric field at the
output of the interferometer, Eout , as a function of the elec-
tric field at its input, E in ,

Eout!
1
2 !rxeik2!x"ryeik2!y"E in . !1"

Here !x and !y are the lengths of the two arms, k is the wave
number for the light we are using, and rx and ry are the
amplitude reflectivities of the end mirrors. In our convention,
a perfectly reflecting mirror has r!"1.
The power falling on the photodiode in Fig. 2 is the square

of the magnitude of the electric field, !Eout!2, or, for perfectly
reflecting end mirrors,

Pout!P in cos2#k!!x"!y"$ , !2"

where P in!!E in!2 is the power entering the interferometer,
provided by the laser in Fig. 2. This output power, and hence
the voltage produced by the photodiode, varies sinusoidally
with the difference in arm lengths, as shown in Fig. 3. If we
let the arm lengths in the absence of a gravitational wave be
!x and !y , then we can write the total arm length as !x
#%!x and !y#%!y , where a gravitational wave induces the
perturbations %!x and %!y . If we write the strain induced by
the gravitational wave as

h&
%!x"%!y

!
, !3"

then we can write the power at the output of the interferom-
eter as

Pout!P in cos2#k!'!#!h "$ , !4"

where '!!!x"!y is the asymmetry in the arm lengths in
the absence of a signal, and the average arm length is !
!(!x#!y)/2. In this paper we will assume that the gravita-
tional wave strain is very small—small enough that k!h
$1. We can then choose an operating point at some '! and
look at the small perturbations in the output power around
that point that the gravitational wave produces. We can de-
scribe this small-signal response mathematically by a Taylor
expansion about '! .

Pout!P in cos2!k'! "#P in
(

(u cos
2u"

u!k'!

!k!h "#¯ .

!5"

The response of our simple Michelson interferometer to a
gravitational wave strain h is proportional to the derivative
of the output power with respect to '! , so the obvious thing
to do is to operate at the point where that derivative is maxi-
mum, which is point 1 in Fig. 3. At this point k'!!)/4, and

Pout*
P in
2 #1"2k!h$ . !6"

Unfortunately, we are then left with a fairly large dc term,
P in cos2(k'!)!Pin/2 in this case, which will fluctuate if '!
varies due to any perturbations on the mirrors, whether it be
a gravitational wave, or seismic disturbance, etc. More im-
portantly, this dc term is proportional to P in , which can fluc-
tuate even if the mirrors remain still.
Measuring small changes in a large signal is seldom an

effective way to do experimental physics. If the amplitude of
the gravitational wave we want to study is very small, as is
too often the case, fluctuations in the dc term described
above can completely obscure our signal. What we need is a
way to reduce or even eliminate the dc term while retaining
and, if possible, boosting our signal. How we meet these two
goals is the subject of this paper.

Fig. 2. A basic Michelson interferometer is sensitive to the kinds of strain a
gravitational wave will produce. Incident laser light is split by a beam split-
ter, sent down orthogonal paths along the x and y axis, reflected from mir-
rors at the ends of these paths, and recombined back at the beam splitter. The
interference between these two return beams produces a net intensity that is
sensitive to differential changes in the lengths of the arms.

Fig. 3. The intensity of the light at the observation port versus the difference
in arm lengths !units of +, the wavelength of the light". Operating at point 1
maximizes the change in power for a given change in arm lengths, but also
makes the instrument sensitive to intensity noise in the light source. Oper-
ating at point 2 eliminates this problem, but, in a simple Michelson inter-
ferometer, it reduces the signal to a second-order effect.
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(note that the amplitude reflection coefficients are equal to -1 
for a perfect mirror; moreover in this formula we consider the 
substrate of the beamsplitter where the reflection picks up an 
additional minus sign only in one direction of propagation)

<latexit sha1_base64="e0eZC8A18jnpHd2BNKr3Qh4cmDs="></latexit>

Eout =
1

2

⇣
rxe

ik(2`x) � rye
ik(2`y)

⌘
Ein

! �1

2

⇣
eik(2`x) � eik(2`y)

⌘
Ein

= �1

2
eik(`x+`y)

⇣
eik(`x�`y) � e�ik(`x�`y)

⌘
Ein

= �ieik(`x+`y) sin [k(`x � `y)]Ein

<latexit sha1_base64="E6kYjcGwJHusUWyZafSnIStj+GE=">AAACbXicbVFNbxMxEPUuXyWlsIA4UBCyGlWUA9FuxNcFqaJC4hgq0laKtyuvM5tY8dqLPQtEaW78Qm78BS78BbybHPrBSJaf3swbzzznlZIO4/h3EF67fuPmrY3bnc07W3fvRfcfHDlTWwFDYZSxJzl3oKSGIUpUcFJZ4GWu4DifHTT5429gnTT6C84rSEs+0bKQgqOnsujngLLKmgoNZQoKZIrriQJ69vHstE+ZlZMpMtty7GvNx5QdNhS31nynK2aQsZLj1JYLU+OSvqfMSX3ab9uNZnsMlMp+vGyv+YtVx/ScSOplFnXjXtwGvQqSNeiSdQyy6BcbG1GXoFEo7twoiStMF9yiFAqWHVY7qLiY8QmMPNS8BJcuWreWdNczY1oY649G2rLnFQteOjcvc1/ZjOgu5xryf7lRjcW71O9T1QharB4qakW9t431dCwtCFRzD7iw0s9KxZRbLtB/UMebkFxe+So46veSN73Xn1919z+s7dggT8gO2SMJeUv2yScyIEMiyJ8gCh4H28Hf8FH4NHy2Kg2DteYhuRDh838huby2</latexit>

P /
⌦
|E|2

↵
) Pout = sin2 [k(`x � `y)]Pin



4

Transfer function
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back at the beam splitter.20 The light emitted at the observa-
tion or antisymmetric port provides a measure of the differ-
ence between the lengths of the interferometer’s arms. !The
symmetric port, from which light returns to the laser, also
contains information about the relative arm lengths. Conser-
vation of energy requires that the power coming out of the
symmetric and antisymmetric ports, along with any power
lost in the instrument, accounts for all of the input power."
Let us consider quantitatively the response of a simple

Michelson interferometer to a gravitational wave. It is not
difficult to derive an expression for the electric field at the
output of the interferometer, Eout , as a function of the elec-
tric field at its input, E in ,
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Here !x and !y are the lengths of the two arms, k is the wave
number for the light we are using, and rx and ry are the
amplitude reflectivities of the end mirrors. In our convention,
a perfectly reflecting mirror has r!"1.
The power falling on the photodiode in Fig. 2 is the square

of the magnitude of the electric field, !Eout!2, or, for perfectly
reflecting end mirrors,

Pout!P in cos2#k!!x"!y"$ , !2"

where P in!!E in!2 is the power entering the interferometer,
provided by the laser in Fig. 2. This output power, and hence
the voltage produced by the photodiode, varies sinusoidally
with the difference in arm lengths, as shown in Fig. 3. If we
let the arm lengths in the absence of a gravitational wave be
!x and !y , then we can write the total arm length as !x
#%!x and !y#%!y , where a gravitational wave induces the
perturbations %!x and %!y . If we write the strain induced by
the gravitational wave as
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then we can write the power at the output of the interferom-
eter as
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where '!!!x"!y is the asymmetry in the arm lengths in
the absence of a signal, and the average arm length is !
!(!x#!y)/2. In this paper we will assume that the gravita-
tional wave strain is very small—small enough that k!h
$1. We can then choose an operating point at some '! and
look at the small perturbations in the output power around
that point that the gravitational wave produces. We can de-
scribe this small-signal response mathematically by a Taylor
expansion about '! .
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The response of our simple Michelson interferometer to a
gravitational wave strain h is proportional to the derivative
of the output power with respect to '! , so the obvious thing
to do is to operate at the point where that derivative is maxi-
mum, which is point 1 in Fig. 3. At this point k'!!)/4, and
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Unfortunately, we are then left with a fairly large dc term,
P in cos2(k'!)!Pin/2 in this case, which will fluctuate if '!
varies due to any perturbations on the mirrors, whether it be
a gravitational wave, or seismic disturbance, etc. More im-
portantly, this dc term is proportional to P in , which can fluc-
tuate even if the mirrors remain still.
Measuring small changes in a large signal is seldom an

effective way to do experimental physics. If the amplitude of
the gravitational wave we want to study is very small, as is
too often the case, fluctuations in the dc term described
above can completely obscure our signal. What we need is a
way to reduce or even eliminate the dc term while retaining
and, if possible, boosting our signal. How we meet these two
goals is the subject of this paper.

Fig. 2. A basic Michelson interferometer is sensitive to the kinds of strain a
gravitational wave will produce. Incident laser light is split by a beam split-
ter, sent down orthogonal paths along the x and y axis, reflected from mir-
rors at the ends of these paths, and recombined back at the beam splitter. The
interference between these two return beams produces a net intensity that is
sensitive to differential changes in the lengths of the arms.

Fig. 3. The intensity of the light at the observation port versus the difference
in arm lengths !units of +, the wavelength of the light". Operating at point 1
maximizes the change in power for a given change in arm lengths, but also
makes the instrument sensitive to intensity noise in the light source. Oper-
ating at point 2 eliminates this problem, but, in a simple Michelson inter-
ferometer, it reduces the signal to a second-order effect.
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The ratio of the electric field amplitudes 

is the transfer function of the interferometer.

<latexit sha1_base64="Lo28l2uF07s9I1DN9F2e6N9/rmU=">AAACeXicbVHbbhMxEPUul5ZwC/AID4aoUQpqusulIKFKFQipj0UibaV4WXmd2cSK7V3Zs9Botf/At/HGj/DCC06ylUrLSCMfz5kZj89kpZIOo+hXEF67fuPmxuatzu07d+/d7z54eOyKygoYiUIV9jTjDpQ0MEKJCk5LC1xnCk6y+cclf/INrJOF+YKLEhLNp0bmUnD0obT743DACg1Tvt3fZ7nlov6UMs1xZnVdVNg0F+7SNA3dpzsSvtZyPmCgVHr2YnUsthvKnDRMQY7jc26n5ZiV0xkmjHWo9/55v+8zsNCw93Tuu66n2BVptxcNo5XRqyBuQY+0dpR2f7JJISoNBoXizo3jqMSk5halUNB0WOWg5GLOpzD20HANLqlXyjV0y0cmNC+sd4N0Fb1YUXPt3EJnPnM5tLvMLYP/48YV5u8Sr1hZIRixfiivFMWCLtdAJ9KCQLXwgAsr/axUzLjXH/2yOl6E+PKXr4Ljl8N4b/jm8+vewYdWjk3ymDwjAxKTt+SAHJIjMiKC/A6eBFtBP/gTPg0H4fN1ahi0NY/IPxa++gtwMr/2</latexit>

H(!) =
Eout

Ein
= �ie

ik(`x+`y) sin [k(`x � `y)]

where k = !/c



5

Effect of a GW with + polarization (w.r.t. the interferometer arms)

arms, reflect off the end mirrors, and recombine to interfere
back at the beam splitter.20 The light emitted at the observa-
tion or antisymmetric port provides a measure of the differ-
ence between the lengths of the interferometer’s arms. !The
symmetric port, from which light returns to the laser, also
contains information about the relative arm lengths. Conser-
vation of energy requires that the power coming out of the
symmetric and antisymmetric ports, along with any power
lost in the instrument, accounts for all of the input power."
Let us consider quantitatively the response of a simple

Michelson interferometer to a gravitational wave. It is not
difficult to derive an expression for the electric field at the
output of the interferometer, Eout , as a function of the elec-
tric field at its input, E in ,
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Here !x and !y are the lengths of the two arms, k is the wave
number for the light we are using, and rx and ry are the
amplitude reflectivities of the end mirrors. In our convention,
a perfectly reflecting mirror has r!"1.
The power falling on the photodiode in Fig. 2 is the square

of the magnitude of the electric field, !Eout!2, or, for perfectly
reflecting end mirrors,

Pout!P in cos2#k!!x"!y"$ , !2"

where P in!!E in!2 is the power entering the interferometer,
provided by the laser in Fig. 2. This output power, and hence
the voltage produced by the photodiode, varies sinusoidally
with the difference in arm lengths, as shown in Fig. 3. If we
let the arm lengths in the absence of a gravitational wave be
!x and !y , then we can write the total arm length as !x
#%!x and !y#%!y , where a gravitational wave induces the
perturbations %!x and %!y . If we write the strain induced by
the gravitational wave as
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!
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then we can write the power at the output of the interferom-
eter as

Pout!P in cos2#k!'!#!h "$ , !4"

where '!!!x"!y is the asymmetry in the arm lengths in
the absence of a signal, and the average arm length is !
!(!x#!y)/2. In this paper we will assume that the gravita-
tional wave strain is very small—small enough that k!h
$1. We can then choose an operating point at some '! and
look at the small perturbations in the output power around
that point that the gravitational wave produces. We can de-
scribe this small-signal response mathematically by a Taylor
expansion about '! .
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The response of our simple Michelson interferometer to a
gravitational wave strain h is proportional to the derivative
of the output power with respect to '! , so the obvious thing
to do is to operate at the point where that derivative is maxi-
mum, which is point 1 in Fig. 3. At this point k'!!)/4, and
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Unfortunately, we are then left with a fairly large dc term,
P in cos2(k'!)!Pin/2 in this case, which will fluctuate if '!
varies due to any perturbations on the mirrors, whether it be
a gravitational wave, or seismic disturbance, etc. More im-
portantly, this dc term is proportional to P in , which can fluc-
tuate even if the mirrors remain still.
Measuring small changes in a large signal is seldom an

effective way to do experimental physics. If the amplitude of
the gravitational wave we want to study is very small, as is
too often the case, fluctuations in the dc term described
above can completely obscure our signal. What we need is a
way to reduce or even eliminate the dc term while retaining
and, if possible, boosting our signal. How we meet these two
goals is the subject of this paper.

Fig. 2. A basic Michelson interferometer is sensitive to the kinds of strain a
gravitational wave will produce. Incident laser light is split by a beam split-
ter, sent down orthogonal paths along the x and y axis, reflected from mir-
rors at the ends of these paths, and recombined back at the beam splitter. The
interference between these two return beams produces a net intensity that is
sensitive to differential changes in the lengths of the arms.

Fig. 3. The intensity of the light at the observation port versus the difference
in arm lengths !units of +, the wavelength of the light". Operating at point 1
maximizes the change in power for a given change in arm lengths, but also
makes the instrument sensitive to intensity noise in the light source. Oper-
ating at point 2 eliminates this problem, but, in a simple Michelson inter-
ferometer, it reduces the signal to a second-order effect.
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arms, reflect off the end mirrors, and recombine to interfere
back at the beam splitter.20 The light emitted at the observa-
tion or antisymmetric port provides a measure of the differ-
ence between the lengths of the interferometer’s arms. !The
symmetric port, from which light returns to the laser, also
contains information about the relative arm lengths. Conser-
vation of energy requires that the power coming out of the
symmetric and antisymmetric ports, along with any power
lost in the instrument, accounts for all of the input power."
Let us consider quantitatively the response of a simple

Michelson interferometer to a gravitational wave. It is not
difficult to derive an expression for the electric field at the
output of the interferometer, Eout , as a function of the elec-
tric field at its input, E in ,
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Here !x and !y are the lengths of the two arms, k is the wave
number for the light we are using, and rx and ry are the
amplitude reflectivities of the end mirrors. In our convention,
a perfectly reflecting mirror has r!"1.
The power falling on the photodiode in Fig. 2 is the square

of the magnitude of the electric field, !Eout!2, or, for perfectly
reflecting end mirrors,

Pout!P in cos2#k!!x"!y"$ , !2"

where P in!!E in!2 is the power entering the interferometer,
provided by the laser in Fig. 2. This output power, and hence
the voltage produced by the photodiode, varies sinusoidally
with the difference in arm lengths, as shown in Fig. 3. If we
let the arm lengths in the absence of a gravitational wave be
!x and !y , then we can write the total arm length as !x
#%!x and !y#%!y , where a gravitational wave induces the
perturbations %!x and %!y . If we write the strain induced by
the gravitational wave as

h&
%!x"%!y

!
, !3"

then we can write the power at the output of the interferom-
eter as

Pout!P in cos2#k!'!#!h "$ , !4"

where '!!!x"!y is the asymmetry in the arm lengths in
the absence of a signal, and the average arm length is !
!(!x#!y)/2. In this paper we will assume that the gravita-
tional wave strain is very small—small enough that k!h
$1. We can then choose an operating point at some '! and
look at the small perturbations in the output power around
that point that the gravitational wave produces. We can de-
scribe this small-signal response mathematically by a Taylor
expansion about '! .

Pout!P in cos2!k'! "#P in
(

(u cos
2u"

u!k'!

!k!h "# Ø .

!5"

The response of our simple Michelson interferometer to a
gravitational wave strain h is proportional to the derivative
of the output power with respect to '! , so the obvious thing
to do is to operate at the point where that derivative is maxi-
mum, which is point 1 in Fig. 3. At this point k'!!)/4, and

Pout*
P in
2 #1"2k!h$ . !6"

Unfortunately, we are then left with a fairly large dc term,
P in cos2(k'!)!Pin/2 in this case, which will fluctuate if '!
varies due to any perturbations on the mirrors, whether it be
a gravitational wave, or seismic disturbance, etc. More im-
portantly, this dc term is proportional to P in , which can fluc-
tuate even if the mirrors remain still.
Measuring small changes in a large signal is seldom an

effective way to do experimental physics. If the amplitude of
the gravitational wave we want to study is very small, as is
too often the case, fluctuations in the dc term described
above can completely obscure our signal. What we need is a
way to reduce or even eliminate the dc term while retaining
and, if possible, boosting our signal. How we meet these two
goals is the subject of this paper.

Fig. 2. A basic Michelson interferometer is sensitive to the kinds of strain a
gravitational wave will produce. Incident laser light is split by a beam split-
ter, sent down orthogonal paths along the x and y axis, reflected from mir-
rors at the ends of these paths, and recombined back at the beam splitter. The
interference between these two return beams produces a net intensity that is
sensitive to differential changes in the lengths of the arms.

Fig. 3. The intensity of the light at the observation port versus the difference
in arm lengths !units of +, the wavelength of the light". Operating at point 1
maximizes the change in power for a given change in arm lengths, but also
makes the instrument sensitive to intensity noise in the light source. Oper-
ating at point 2 eliminates this problem, but, in a simple Michelson inter-
ferometer, it reduces the signal to a second-order effect.
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Figure 2. The response of a Michelson interferometer as a function of the fringe level. The half and
dark fringe conditions are marked as 1 and 2, respectively.

The incident electromagnetic field of the laser, passing through the modulator, acquires
a time-varying phase and the electromagnetic field becomes:

y(t) = y0e�i(w0t+m sin(Wt)), (21)

where y0 is the amplitude of the input beam, w0 is the laser frequency, m is the modulation
index and W is the modulation frequency.

Equation (21) can be expanded in Fourier modes as:

y(t) = y0

+•

Â
n=�•

Jn(m)e�i(w0+nW)t, (22)

where Jn(m) are the Bessel functions. For m << 1, only three terms of the expansion can
be considered:

y(t) ⇡ y0

h
J0(m)e�iw0t + J1(m)e�i(w0+W)t + J�1(m)e�i(w0�W)t

i
, (23)

where the first term represents the carrier, and the other two terms correspond to the first
upper and lower sidebands with frequencies w± = w0 ± W. Equation (23) describes the
beam impinging on the Fabry–Perot resonant cavity as composed of three independent
fields: the carrier and the sideband ones.

If the distance between the beam splitter and the input mirror of the FP cavity along
X and Y arms is the same, carrier and sidebands are both on the dark fringe. However,
introducing a macroscopic arm length difference of several centimeter equal to an integer
number of laser wavelength, called Schnupp asymmetry (lX � lY in Figure 1), the sidebands
are no longer on the dark fringe, allowing to be transferred through the interferometer to
the output port even if the carrier is at the dark fringe.

When a GW propagates through the interferometer, the term of the electromagnetic
field at the dark port containing the contributions of beats of the carrier with the sidebands,
encodes the GW signal, which is linear in h and oscillates at frequency W [8]. In a second
demodulation process the photo-current is then electronically demodulated at W in order
to finally derive the GW signal stream at fgw.

In conclusion, operating at dark fringe and introducing a small asymmetry in the
distance between the beam splitter and the input mirrors of the FP cavities, make the signal
insensitive to the laser power fluctuations and allow the extraction of the GW signal from
the component demodulated at W which is linear (and not quadratic) in h.

This technique, based on the use of the sidebands as optical local oscillator to extract
the gravitational wave signal, called heterodyne readout, was commonly used in the
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Phase modulation

tial motion of the end mirrors has introduced a small phase in
E . This phase is positive for the y arm !the arm along the y
axis", but negative for the x arm because the mirrors move in
opposite directions under the influence of the gravitational
wave. When it reflects off of the beam splitter, the light from
the x arm acquires a 180° phase shift, so that when it com-
bines with the light from the y arm, destructive interference
occurs and, in the absence of a gravitational wave, the port is
dark. In the presence of a gravitational wave, the small
imaginary components acquired in the x and y arms add
constructively after the beam splitter, resulting in a small,
purely imaginary E . That this field is 90° out of phase with
the light incident on the beam splitter will be important later,
when we talk about lock-in detection. The power falling on
the photodetector is the square of the amplitude of this small,
imaginary E , just after the photodetector.

Pout!P in sin2!k!h "#P ink2!2h2, !8"

which is proportional to the square of the strain, h2. We
expect h to be very small, on the order of 10"21 or less, so an
output proportional to h2, rather than h , would be quite
small and very difficult to detect. !For a kilometer-scale in-
terferometer, P in would have to be on the order of a kilowatt
to produce more than one photon per second in Pout .) Op-
erating at the null point has eliminated our intensity noise,
but it has also nearly killed our signal. Fortunately, there is a
way to recover the signal without coupling to the intensity
noise, and that is the subject of Sec. VB.

B. Obtaining a linear signal: Lock-in detection

We can recover a signal that is linear in h without reintro-
ducing intensity noise by using lock-in detection.21 In lock-in
detection, we modulate the signal and observe the resulting
change in the output of the instrument. We then compare that
change with our modulation signal to measure the derivative

of the instrument’s output with respect to a signal. At the null
point both the output power and its derivative are zero, but
while a gravitational wave produces a second-order change
in the output power, it produces a first-order change in its
derivative. This first-order signal is something we have a
chance of detecting.

1. Sidebands

Lock-in detection requires that we modulate the signal.
The most obvious way to do that would be to purposefully
move the mirrors in a way that mimics a gravitational wave
signal. In practice, however, it is easier to both implement
and describe this modulation by acting on the phase of the
laser using a Pockels cell. A Pockels cell is essentially just a
block of dielectric material with an index of refraction that
depends on an applied electric field. If we pass the incident
beam through a Pockels cell and apply an oscillating electric
field to it, we will modulate the phase of the light going into
the interferometer, as shown in Fig. 6. The electric field of
the light going into the interferometer can then be written as
E in!E0ei($t#% sin &t)

#E0'J0!%"ei$t#J1!%"ei($#&)t"J1!%"ei($"&)t( , !9"

where J0 and J1 are zeroth and first order Bessel functions.
The first term on the right-hand side of Eq. !9" is called the
carrier; the next two are referred to as the sidebands.
We can calculate the electric field exiting the interferom-

eter by considering the carrier and sidebands separately. We
define the transfer function t of an interferometer for light of
any given wavelength as the ratio of the output electric field
to the incident field,

t)
Eout
E in

, !10"

where Eout is given by Eq. !1". Our modulated beam is com-
posed of three different wavelengths, so we can find an ex-
pression for the light exiting the interferometer by applying
the appropriate transfer function to each part, that is,

Fig. 5. When one arm is lengthened and the other shortened slightly by a
gravitational wave, the two beams in the arms acquire equal but opposite
small phase shifts. The beam splitter introduces an additional 180° shift
between them. The two beams add so that the net result is a small amplitude
beam phase shifted 90° from the input beam.

Fig. 6. We can use lock-in detection to recover a linear signal from a dark
port.
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We use phase modulation to linearize the interferometer 
response at the null point

<latexit sha1_base64="6si6fcjyH0R3SvaTk56/TF21nkk="></latexit>

Ein = E0e
i(!t+� sin⌦t) (! = ck)



8

Mathematical aside: 
Bessel’s functions of the first kind and integer order

Consider Laplace’s equation in cylindrical coordinates 

∇2Φ = 0

∇2Φ = ∂2Φ
∂r2

+ 1
r
∂Φ
∂r

+ 1
r2

∂2Φ
∂θ 2 + ∂2Φ

∂z2
= 0
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Φ r,θ , z( ) = R r( )Θ θ( )Z z( )

we try a factored solution

then, we obtain

∂2R
∂r2

Θ θ( )Z z( ) + 1
r
∂R
∂r

Θ θ( )Z z( ) + 1
r2

∂2Θ
∂θ 2 R r( )Z z( ) + ∂2Z

∂z2
R r( )Θ θ( ) = 0

1
R
∂2R
∂r2

+ 1
r
∂R
∂r

⎛
⎝⎜

⎞
⎠⎟
+ 1
r2

1
Θ

∂2Θ
∂θ 2

⎛
⎝⎜

⎞
⎠⎟
+ 1

Z
∂2Z
∂z2

⎛
⎝⎜

⎞
⎠⎟
= 0

The last sum depends on three separate pieces that depend on different, independent 
variables, and the only way for it to hold for all values of the variables is that each piece is 
a constant.
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1
R
∂2R
∂r2

+ 1
r
∂R
∂r

⎛
⎝⎜

⎞
⎠⎟
+ 1
r2

1
Θ

∂2Θ
∂θ 2

⎛
⎝⎜

⎞
⎠⎟
+ 1

Z
∂2Z
∂z2

⎛
⎝⎜

⎞
⎠⎟
= 0

⇒ 1
Z
∂2Z
∂z2

= λ 2

⇒ r2 1
R
∂2R
∂r2

+ 1
r
∂R
∂r

⎛
⎝⎜

⎞
⎠⎟
+ 1

Θ
∂2Θ
∂θ 2

⎛
⎝⎜

⎞
⎠⎟
= −λ 2r2

⇒ r2 1
R
∂2R
∂r2

+ 1
r
∂R
∂r

+ λ 2⎛
⎝⎜

⎞
⎠⎟
= − 1

Θ
∂2Θ
∂θ 2 = n2

⇒ 1
Θ

∂2Θ
∂θ 2 = −n2 and r2 ∂

2R
∂r2

+ r ∂R
∂r

+ λ 2r2 − n2( )R = 0
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The first two equations are easy to solve

The third equation

is Bessel’s equation of order n

∂2Z
∂z2

= λ 2Z ⇒ Z z( ) = Aλe
λz + Bλe

−λz

∂2Θ
∂θ 2 = −n2Θ ⇒ Θ θ( ) = Cn cosnθ + Dn sinnθ

x2 ∂
2R
∂x2

+ x ∂R
∂x

+ x2 − n2( )R = 0 x = λr( )
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Now let Jn(x) be the solution of the n-th order equation, then

and when we introduce the generating function

we find that it satisfies the equation 

(prove it! For a solution, see the final slides) 

x2 ∂
2 Jn
∂x2

+ x ∂Jn
∂x

+ x2 − n2( )Jn = 0

F x,t( ) = Jn x( )t n
n=−∞

+∞

∑

x2 ∂
2F
∂x2

+ x ∂F
∂x

+ x2F = t 2 ∂
2F
∂t 2

+ t ∂F
∂t
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The following function satisfies the p.d.e.

which we can confirm by direct substitution into the equation.

Finally, if we let

we find the Jacobi-Anger identity

F x,t( ) = exp x
2
t − 1

t
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

t = eiθ

F x,θ( ) = exp x
2
eiθ − e− iθ( )⎡

⎣⎢
⎤
⎦⎥
= exp ixsinθ( ) = Jn x( )einθ

n
∑
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Since the generating function

is invariant with respect with the exchange                        we also find

and therefore   

F x,t( ) = exp x
2
t − 1

t
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
= Jn x( )t n

n
∑

F x,t( ) = Jn x( )t n
n
∑ = −1( )n Jn x( )t −n

n
∑ = −1( )n J−n x( )t n

n
∑

Jn x( ) = −1( )n J−n x( )

t $ �1/t



)$
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Phase modulation

tial motion of the end mirrors has introduced a small phase in
E . This phase is positive for the y arm !the arm along the y
axis", but negative for the x arm because the mirrors move in
opposite directions under the influence of the gravitational
wave. When it reflects off of the beam splitter, the light from
the x arm acquires a 180° phase shift, so that when it com-
bines with the light from the y arm, destructive interference
occurs and, in the absence of a gravitational wave, the port is
dark. In the presence of a gravitational wave, the small
imaginary components acquired in the x and y arms add
constructively after the beam splitter, resulting in a small,
purely imaginary E . That this field is 90° out of phase with
the light incident on the beam splitter will be important later,
when we talk about lock-in detection. The power falling on
the photodetector is the square of the amplitude of this small,
imaginary E , just after the photodetector.

Pout!P in sin2!k!h "#P ink2!2h2, !8"

which is proportional to the square of the strain, h2. We
expect h to be very small, on the order of 10"21 or less, so an
output proportional to h2, rather than h , would be quite
small and very difficult to detect. !For a kilometer-scale in-
terferometer, P in would have to be on the order of a kilowatt
to produce more than one photon per second in Pout .) Op-
erating at the null point has eliminated our intensity noise,
but it has also nearly killed our signal. Fortunately, there is a
way to recover the signal without coupling to the intensity
noise, and that is the subject of Sec. VB.

B. Obtaining a linear signal: Lock-in detection

We can recover a signal that is linear in h without reintro-
ducing intensity noise by using lock-in detection.21 In lock-in
detection, we modulate the signal and observe the resulting
change in the output of the instrument. We then compare that
change with our modulation signal to measure the derivative

of the instrument’s output with respect to a signal. At the null
point both the output power and its derivative are zero, but
while a gravitational wave produces a second-order change
in the output power, it produces a first-order change in its
derivative. This first-order signal is something we have a
chance of detecting.

1. Sidebands

Lock-in detection requires that we modulate the signal.
The most obvious way to do that would be to purposefully
move the mirrors in a way that mimics a gravitational wave
signal. In practice, however, it is easier to both implement
and describe this modulation by acting on the phase of the
laser using a Pockels cell. A Pockels cell is essentially just a
block of dielectric material with an index of refraction that
depends on an applied electric field. If we pass the incident
beam through a Pockels cell and apply an oscillating electric
field to it, we will modulate the phase of the light going into
the interferometer, as shown in Fig. 6. The electric field of
the light going into the interferometer can then be written as
E in!E0ei($t#% sin &t)

#E0'J0!%"ei$t#J1!%"ei($#&)t"J1!%"ei($"&)t( , !9"

where J0 and J1 are zeroth and first order Bessel functions.
The first term on the right-hand side of Eq. !9" is called the
carrier; the next two are referred to as the sidebands.
We can calculate the electric field exiting the interferom-

eter by considering the carrier and sidebands separately. We
define the transfer function t of an interferometer for light of
any given wavelength as the ratio of the output electric field
to the incident field,

t)
Eout
E in

, !10"

where Eout is given by Eq. !1". Our modulated beam is com-
posed of three different wavelengths, so we can find an ex-
pression for the light exiting the interferometer by applying
the appropriate transfer function to each part, that is,

Fig. 5. When one arm is lengthened and the other shortened slightly by a
gravitational wave, the two beams in the arms acquire equal but opposite
small phase shifts. The beam splitter introduces an additional 180° shift
between them. The two beams add so that the net result is a small amplitude
beam phase shifted 90° from the input beam.

Fig. 6. We can use lock-in detection to recover a linear signal from a dark
port.
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Response of the interferometer
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We can make the arms unequal in length so that                            and therefore   
(the difference is the Schnupp asymmetry)

With the Schnupp asymmetry, the transfer function evaluated at the carrier frequency is 

while at the sideband frequencies we find 
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Total electric field at the output port

<latexit sha1_base64="r4KAeUqTA5Gopbay4UJDQ11/QiE="></latexit>

Eout = E0

⇣
H0J0(�)e

i!t +H+J1(�)e
i(!+⌦)t �H�J1(�)e

i(!�⌦)t
⌘

= �i Eine
2ik`

e
i!t


J0(�)

2⇡`

�
h+ J1(�) sin

✓
⌦

c
�`

◆⇣
e
i⌦t+2i⌦`/c + e

�i⌦t�2i⌦`/c
⌘�

= �i Eine
2ik`

e
i!t


J0(�)

2⇡`

�
h+ 2J1(�) sin

✓
⌦

c
�`

◆
cos (⌦t+ 2⌦`/c)

�



20

Total power at the output port
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recalling that                                        we find:
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DC Fourier components

component at twice the modulation frequency, 
which does not carry useful information on wave
amplitude

sideband power, linear in the 
wave amplitude
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tial motion of the end mirrors has introduced a small phase in
E . This phase is positive for the y arm !the arm along the y
axis", but negative for the x arm because the mirrors move in
opposite directions under the influence of the gravitational
wave. When it reflects off of the beam splitter, the light from
the x arm acquires a 180° phase shift, so that when it com-
bines with the light from the y arm, destructive interference
occurs and, in the absence of a gravitational wave, the port is
dark. In the presence of a gravitational wave, the small
imaginary components acquired in the x and y arms add
constructively after the beam splitter, resulting in a small,
purely imaginary E . That this field is 90° out of phase with
the light incident on the beam splitter will be important later,
when we talk about lock-in detection. The power falling on
the photodetector is the square of the amplitude of this small,
imaginary E , just after the photodetector.

Pout!P in sin2!k!h "#P ink2!2h2, !8"

which is proportional to the square of the strain, h2. We
expect h to be very small, on the order of 10"21 or less, so an
output proportional to h2, rather than h , would be quite
small and very difficult to detect. !For a kilometer-scale in-
terferometer, P in would have to be on the order of a kilowatt
to produce more than one photon per second in Pout .) Op-
erating at the null point has eliminated our intensity noise,
but it has also nearly killed our signal. Fortunately, there is a
way to recover the signal without coupling to the intensity
noise, and that is the subject of Sec. VB.

B. Obtaining a linear signal: Lock-in detection

We can recover a signal that is linear in h without reintro-
ducing intensity noise by using lock-in detection.21 In lock-in
detection, we modulate the signal and observe the resulting
change in the output of the instrument. We then compare that
change with our modulation signal to measure the derivative

of the instrument’s output with respect to a signal. At the null
point both the output power and its derivative are zero, but
while a gravitational wave produces a second-order change
in the output power, it produces a first-order change in its
derivative. This first-order signal is something we have a
chance of detecting.

1. Sidebands

Lock-in detection requires that we modulate the signal.
The most obvious way to do that would be to purposefully
move the mirrors in a way that mimics a gravitational wave
signal. In practice, however, it is easier to both implement
and describe this modulation by acting on the phase of the
laser using a Pockels cell. A Pockels cell is essentially just a
block of dielectric material with an index of refraction that
depends on an applied electric field. If we pass the incident
beam through a Pockels cell and apply an oscillating electric
field to it, we will modulate the phase of the light going into
the interferometer, as shown in Fig. 6. The electric field of
the light going into the interferometer can then be written as
E in!E0ei($t#% sin &t)

#E0'J0!%"ei$t#J1!%"ei($#&)t"J1!%"ei($"&)t( , !9"

where J0 and J1 are zeroth and first order Bessel functions.
The first term on the right-hand side of Eq. !9" is called the
carrier; the next two are referred to as the sidebands.
We can calculate the electric field exiting the interferom-

eter by considering the carrier and sidebands separately. We
define the transfer function t of an interferometer for light of
any given wavelength as the ratio of the output electric field
to the incident field,

t)
Eout
E in

, !10"

where Eout is given by Eq. !1". Our modulated beam is com-
posed of three different wavelengths, so we can find an ex-
pression for the light exiting the interferometer by applying
the appropriate transfer function to each part, that is,

Fig. 5. When one arm is lengthened and the other shortened slightly by a
gravitational wave, the two beams in the arms acquire equal but opposite
small phase shifts. The beam splitter introduces an additional 180° shift
between them. The two beams add so that the net result is a small amplitude
beam phase shifted 90° from the input beam.

Fig. 6. We can use lock-in detection to recover a linear signal from a dark
port.
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Photodiode response is proportional to power

    then mixing, averaging, and adjusting phase to maximize the signal
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the Schnupp asymmetry is chosen so that 
power is maximized in the signal-recycling 
cavity (see later), and in practice, for Virgo, 
this means that 
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Virgo’s 35-cm diameter mirrors have an almost perfect surface

The large mirrors of Advanced Virgo are a crucial part of the detector. Indeed, achieving the best sensitivity to 
gravitational waves requires the loss of as little laser light as possible in the detector. For that purpose, all the three 
ingredients of a mirror, the substrate, the polishing and the coating, are at the frontier of current technology:

1. The substrate is made with the purest glass in the world (it is a synthetic quartz called “fused silica”). This glass has 
extremely low absorption and is homogeneous and uniform in all the directions. Despite its outstanding properties, 
it can come in relatively large size. For example, the mirror forming the 3-km arm cavities have a 350 mm diameter, 
are 200 mm thick, and have a mass of 40 kg.

2. The polishing, to shape the mirror profile, is done at the atomic level: on the central part of the mirror, the largest 
defects on the surface have a height of just 5 atoms.

3. The last step, the coating, is made to have reflective mirrors. The coating is precisely tuned so that the mirror has the 
desired reflectivity at the operational wavelength and so that less than 0.0001% of the laser light is lost when it is 
reflected by the mirror (due to the absorption, residual transmission, or scattering). This precise coating is done with 
a unique machine located in a laboratory of the Virgo Collaboration in the Lyon metropolitan area (LMA, Laboratoire 
des Matériaux Avancés). The mirrors for the LIGO interferometers are also coated in this laboratory.
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Picture of the Advanced Virgo 
beam-splitter mirror 
(diameter 550 millimeters) 
being prepared in the LMA 
clean room.

Credit: Virgo 
Collaboration/LMA/L. Pinard
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The two Advanced 
Virgo end mirrors after 
they have been coated 
at LMA.

Credits: Virgo 
collaboration/LMA/L. 
Pinard



27

Virgo’s 40 kg mirrors are suspended by thin glass wires

Because of their non-zero temperature, atoms and molecules of mirrors and suspension wires are vibrating: these induce 
vibrations of the mirror surface that may mimic a gravitational wave passing the interferometer. The way the large mirrors 
of Advanced Virgo are suspended is thus crucial to reduce this thermal noise.
For that purpose, suspensions wires made of the same glass (fused silica) as the mirrors have been developed to 
minimize the pendulum thermal noise of suspended mirrors. 
These suspensions are called monolithic since the wires are welded to the mirrors and are both composed of the same 
fused silica. This design allows to reduce the friction at the mirror-wire contact point, which is a source of the thermal 
noise. With the monolithic choice, the dissipations are so low that pendulum oscillations in vacuum can last for months 
before stopping. Moreover, fused silica wires have a high breaking strength, about twice that of steel wires. Such strength 
is very important, since the suspension must be highly resistant to the mechanical stress caused by oscillations of the 
mirror itself and to possible mechanical shocks of the mirror onto the surrounding materials.
The material of the suspension must be precisely controlled and produced, and carefully manipulated. For this reason, 
the glass fibers (diameter of 0.4 mm and length of 0.7 m) are directly produced in the laboratories in Cascina using a laser 
machine and tested with very high accuracy and reproducibility.
A particular chemical bonding technique (silicate bonding) has also been developed to join all the glass components in a 
unique element. This kind of suspension is apparently very fragile, but instead it is highly resistant along the fiber 
direction. However, special care must be taken to prevent any possible lateral damage to the fibers themselves.
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42 kg mirror (with a thin pink protecting film) suspended inside the 
payload by two thin wires of fused silica (glass).

Credits: Virgo collaboration
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Zoom on an anchor bonded 
to one side of a mirror and 
attached monolithically to 
two thin fused silica wires 
used to suspend the 42 kg 
mirror.

Credits: Virgo collaboration
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Virgo is a kilometer-wide optical table suspended and 
placed in ultra-high vacuum

The Virgo interferometer is a huge optical table placed under ultra-high 
vacuum. Each optical element is suspended with a seismic isolation system 
that is housed in a vacuum tank. 

Two types of suspensions have been developed. The interferometer 
mirrors and the main optical benches are suspended with the so-called 
“super-attenuators”, housed in vacuum “towers” about 10-m high. For 
Advanced Virgo, five more optical benches sensing the interferometer 
beams have been suspended with the so-called “multi-stage seismic 
attenuation system” and housed in vacuum “mini-towers” more than 
3 meters high. 

The vacuum towers are linked together by vacuum tubes for the passage of 
the laser beams. The largest tubes of Virgo, that link the two towers of the 
Fabry-Perot cavities are 3 km long and 1.2 m diameter. This makes Virgo a 
huge ultra-high vacuum chamber of 6800 m3.

30 4 Advanced Virgo

Fig. 4.1 Mechanical scheme
of the Superattenuator. Its
aim is to isolate the test
masses from the ground
motion

For Advanced Virgo all the resonant frequencies are below 2.5 Hz, which means
that the mirrors behave as free test masses in the horizontal direction above this
frequency. The seismic noise is attenuated by 14 orders of magnitude above 10 Hz
thanks to the suspension chain [5].

4.4 INJ: Injection

This subsystem is the interface between the laser and the interferometer. It plays an
important role: it fixes the beam size, position and power to match the interferometer.
It also controls some noise sources such as the frequency and power fluctuations, the
beam jitter or the beam position fluctuations. Figure 4.2 shows a basic scheme of the
different components of this subsystem from the laser source to the interferometer
input.

The bench under vacuum is suspended, with an attenuator similar to the one of
the mirrors but smaller. The bench which is on air is not suspended, but the ground
motion is passively damped by a special support and it could be actively corrected
if needed.
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Ultra-high vacuum in the large tubes and around the mirrors is crucial for two reasons. Moving residual air molecules 
would hit the mirrors, inducing tiny displacements of the mirrors; moreover, the laser beam would interact with the 
air molecules, modifying its path and loosing power. That would perturb the measurement of gravitational waves. 
Therefore, the path of the light beam that travels in each Fabry-Perot cavity has to be evacuated down to the 
extremely low pressure of 10-12 atmospheres (100 times lower than for initial Virgo).

To attain this very low value, special metallurgical processes such as hydrogen desorption at 400°C have been 
developed for the fabrication of the vacuum parts. In addition, to eliminate the water vapor in the large 3-km long 
tubes, they will be heated at 150°C for one month each and cryogenic traps have been installed for Advanced Virgo at 
each end of the tubes to stop the migration of water molecules from the unbaked towers to the tubes. Despite their 
thermal isolation, each 3-km vacuum tube requires a power close to 1 MW to perform the heating operation.

The optical benches host a lot of mirrors, lenses and sensors (photodiodes and cameras). In Virgo, these optical 
elements were slightly vibrating because of ground vibrations and environmental sounds. This was limiting the Virgo 
sensitivity to gravitational waves.

In order to attenuate these vibrations, the new Advanced Virgo benches, weighting about 320 kg, have been 
suspended and placed into vacuum like the large mirrors.
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Figure 29. rendering of the vacuum chambers in the ’central area’

15.1. Pumping system

Most of the Virgo pumps are still used in Advanced Virgo. Upper and lower chamber of
each tower are separately pumped by a turbo-molecular group consisting of a 1500 l/s
turbo backed by a dry scroll pump, used also for roughing. In order to reduce vibration
level and maintenance times, the turbo pumps are of the hybrid type with magnetic
suspensions. To further reduce the mechanical vibrations, scroll pumps have been
moved to a far and acoustically isolated room and turbos are clamped to ground and
connected to the towers with soft bellows. In a second phase and if proven necessary
during commissioning tests, turbos will be progressively replaced with Ion pumps,
in order to further reduce the noise emissions (seismic, acoustic and magnetics). A
downtime for turbo-pumping will be anyway necessary after in-towers interventions
and ventings to recover the appropriate vacuum level and to deplete the residual traces
of air otherwise di↵using in the system. In the arm tubes, roughing and intermediate
phases are achieved with a large dry mechanical pumping group. Evacuation continues
with a turbo-molecular group similar to those of the towers every 600m. Final vacuum
will be reached after baking and maintained by Titanium sublimation pumps most
suited to pump hydrogen (3000 l/s) and smaller Ion pumps (70 l/s) to handle inert
gases. Periodical regeneration of Ti evaporated layer will slightly lower the pumping
duty cycle; normally 5 out of 7 groups will be in operation along each arm.

15.2. Cryogenics

In Advanced Virgo water migrating from the towers to the 3 km pipes will be stopped
with four large cryotraps, one at each end of the arm pipes and with two smaller ones
between the bench towers and the recycling towers. The large cryotraps are installed
between the input (end) towers and the corresponding Large Valve. They consist (fig.
30) of a vacuum pipe about 3m long and 1.4m in diameter, containing a 2m long tank
with the shape of a sleeve, filled with about 300 l of liquid nitrogen. The sleeve has
been built in aluminum for a more uniform temperature distribution; with an inner
diameter of 0.95m it has a 6m2 cold surface to capture water and other condensable
gases. The outer wall of the cold tank is centered out of the beam axis in order to
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Five interferometer 
mirrors and two 
benches are 
suspended to 
superattenuators in 
the central 
building. 

Credits: Cyril 
Frésillon/Virgo/Pho
tothèque CNRS
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The Advanced Virgo benches are suspended to an attenuator and 
placed in vacuum to isolate them from vibrations from the ground and 
from environmental sounds.

Credits: Cyril Frésillon/Virgo/Photothèque CNRS
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The Virgo 
north 
vacuum tube, 
1.2 m in 
diameter, 
inside its 3 
km long 
tunnel.

Credit: Virgo 
Collaboration
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The Virgo 3 km long north tunnel.



37

The Virgo 3 km long west tunnel.
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Fig. 3.2 Scheme of a
Michelson interferometer
with Fabry-Perot cavities on
its arms

The extra phase accumulated due to a change on the length of a Fabry-Perot cavity
is equal to:

δφFP = 2 · k · 2 · F
π

· δL (3.15)

The effect of this δL on the phase is increasedwith respect to a singlemirror by a factor
GFP = 2 ·F

π
usually known as optical gain of the cavity. However, the behaviour of

a Fabry-Perot cavity depends on the frequency. The storage time is a parameter that
gives the time needed to “fill” a resonant cavity. If the change on the length is faster
than this time, its effects are attenuated by the cavity (it acts as a low-pass filter).
Taking in account the frequency behaviour of the cavity we can write:

δφFP = 2 · k · GFP · δL
√
1+

(
f
fc

)2
(3.16)

where fc = c
4FL is the cut-off frequency over which the effects start to be attenuated

by the cavity. In the case of Advanced Virgo, for Fabry-Perot cavities of F ∼ 450
and arm lengths of 3 km the cut-off frequency is around 50 Hz.

Now we can repeat a reasoning analogous to the one in the previous section to
evaluate the impact of the shot noise on the sensitivity when we add Fabry-Perot
cavities in the arms. The minimal strain that can be detected in this case is:

h̃shot =
1

GFP
· 1
k · L ·

√
hPν

P0 · (r21 + r22 )
· 1
√
1 −

√
1 − C2

·
√

1+
(

f
fc

)2

(3.17)

Comparing it to the expression in Eq. 3.13 it can be seen that the sensitivity is
improved by a factor GFP , which in the case of the Advanced Virgo arm cavities is
∼290.

Scheme of a Michelson 
interferometer with Fabry-
Perot cavities on its arms 

Basic scheme of a Fabry-Perot 
resonant cavity
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Standard theory of Fabry-Perot resonant cavities: mirrors with equal (and real) reflectivity and 
transmission coefficients, no absorption

Energy conservation means
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Again, remember that transmittivity 
and reflectivity are both real here
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This expression is also known as the Airy function (see Fig. 5.2) and it depends on
the phase accumulated during one round-trip, 2kL. This function contains all the
relevant information that can be extracted from a Fabry-Perot cavity [1].

• Resonance condition: when the phase shift after one round trip corresponds to
an integer multiple of 2π their interference is constructive and the cavity is on
resonance.

"φ = 2 · k · L = n · 2 · π (5.5)

Figure 5.2 shows that this phase shift corresponds to amaximumon the transmitted
power. When substituting in Eqs. 5.1 and 5.2 it can be seen that it also corresponds
to a maximum of the intra-cavity power and a minimum of the reflected power. As
the aim of adding Fabry-Perot cavities on the arms is to enhance the optical path
this is the working point on which we are interested, because it corresponds to the
maximum number of round trips travelled by the light.

• Free Spectral Range: is the frequency difference between two consecutive
resonances.

FSR = "ν = c
2 · L (5.6)

• Linewidth: it is the full width at half maximum (see Fig. 5.2), and it is related to
the pole frequency of the cavity such that fp = FWHM/2. It can be calculated from
the condition Ptr (ω1/2) = Ptr (ω = 0)/2 obtaining:

Fig. 5.2 Power transmitted by a Fabry-Perot cavity as a function of the phase shift accumulated in
a round-trip shows an Airy function. In the figure three different cavity configurations are shown:
R = r21 = r22 = 0.99, R = 0.8, R = 0.5. No losses were considered (T + R = 1). δν is the cavity
linewidth and FSR the free spectral range

(Phase shift 2kL accumulated in a complete round trip)
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power. When substituting in Eqs. 5.1 and 5.2 it can be seen that it also corresponds
to a maximum of the intra-cavity power and a minimum of the reflected power. As
the aim of adding Fabry-Perot cavities on the arms is to enhance the optical path
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• Linewidth: it is the full width at half maximum (see Fig. 5.2), and it is related to
the pole frequency of the cavity such that fp = FWHM/2. It can be calculated from
the condition Ptr (ω1/2) = Ptr (ω = 0)/2 obtaining:

Fig. 5.2 Power transmitted by a Fabry-Perot cavity as a function of the phase shift accumulated in
a round-trip shows an Airy function. In the figure three different cavity configurations are shown:
R = r21 = r22 = 0.99, R = 0.8, R = 0.5. No losses were considered (T + R = 1). δν is the cavity
linewidth and FSR the free spectral range

first peak at nonzero frequency (FSR)

Analogy with the harmonic oscillator

"photon lifetime" inside the resonant cavity (on 
resonance)

or also
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Ray confinement in a Fabry-Perot resonant cavity 
(simple geometrical optics approach)

378 CHAPTER 10 RESONATOR OPTICS 

10.2 SPHERICAL-MIRROR RESONATORS 

The planar-mirror resonator configuration discussed in the preceding section is highly 
sensitive to misalignment. If the mirrors are not perfectly parallel, or the rays are not 
perfectly normal to the mirror surfaces, they undergo a sequence of lateral displace-
ments that eventually causes them to wander out of the resonator (see Fig. 10.1-1). 
Spherical-mirror resonators, in contrast, provide a more stable configuration for the 
confinement of light that renders them less sensitive to misalignment under appropriate 
geometrical conditions. 

A spherical-mirror resonator is constructed from two spherical mirrors of radii R 1 
and R2, separated by a distance d (Fig. 10.2-1). A line connecting the centers of 
the mirrors defines the optical axis (z axis), about which the system exhibits circular 
symmetry. Each of the mirrors can be concave (R < 0) or convex (R > 0). The planar-
mirror resonator is a special case for which R 1 = R2 = oo. Making use of the results 
set forth in Sec. 1 .4D, we first examine the conditions required for ray confinement. 
Then, using the results derived in Chapter 3, we determine the resonator modes and 
resonance frequencies. Finally, we briefly discuss the implications of finite mirror size. 

z 

A. Ray Confinement 

Figure 10.2-1 Geometry of a spherical-mirror 
resonator. In this illustration both mirrors are 
concave (their radii of curvature are negative). 

We begin with ray optics to determine the conditions of confinement for light rays in 
a spherical-mirror resonator. We consider only meridional rays (rays lying in a plane 
that passes through the optical axis) and limit our consideration to paraxial rays (rays 
that make small angles with the optic axis). The matrix-optics methods introduced in 
Sec. 1.4, which are valid only for meridional and paraxial rays in a circularly symmetric 
system, are thus suitable for studying the trajectories of these rays as they travel inside 
the resonator. 

A resonator is a periodic optical system, since a ray travels through the same system 
after a round trip of two reflections. We may therefore make use of the analysis of 
periodic optical systems presented in Sec. 1.4D. Let Ym and 0m be the position and 
inclination of an optical ray after m round trips, as illustrated in Fig. J 0.2-2. Given Ym 
and 0m, we determine Ym+l and 0m+l by tracing the ray through the system. 

For paraxial rays, where all angles are small, the relation between (Ym+ 1, 0m+ 1) and 
(Ym, 0m) is linear and can be written in matrix form as 

[Ym+l] = [A B] [Ym] . 0m+l C D 0m (10.2-1) 

Beginning at the bottom-left of Fig. 10.2-2 with y0 and 00 , the round-trip ray-transfer 
matrix for the ray pattern depicted in Fig. 10.2-2 is 

(10.2-2) 

Geometry of a spherical-mirror resonator. In 
this illustration both mirrors are concave (their 
radii of curvature are negative). 
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Methodological aside: matrix optics
(from Saleh&Teich, Fundamentals of Photonics, 2nd ed. Wiley 2007;  for a concise explanation, see also 
https://www.rp-photonics.com/abcd_matrix.html)

y 
Input 
plane 

Y1 

Z1 

y 

Ray 

0 

Optical 
• axis 

Optical system 

Y2 

Z2 

z 

Output 
(y2, 02) 

Output 
plane 

02 

z 
Optical 

• axis 

1.4 MATRIX OPTICS 25 

Figure 1.4-1 A ray is charac-
terized by its coordinate y and its 
angle 0. 

Figure 1.4-2 A ray enters an 
optical system at location z1 with 
position y1 and angle 01 and leaves 
at position y2 and angle 02. 

direction Y1, 01 . It steers the ray so that it has new position and direction y2 , 02 at 
the output plane (Fig. 1.4-2). 

In the paraxial approximation, when all angles are sufficiently small so that sin 0 
0, the relation between y2 , 02 and y1 , 01 is linear and can generally be written in 
the form 

Y2 == Ay1 + B01 
02 == Cy1 + 001, 

(1.4-1) 

(1.4-2) 

where A, B, C, and Dare real numbers. Equations (1.4-1) and (1.4-2) may be conve-
niently written in matrix form as 

A B 
C D (1.4-3) 

The matrix M, whose elements are A, B, C, and D, characterizes the optical system 
completely since it permits y2 , 02 to be determined for any y1 , 01 . It is known as the 
ray-transfer matrix. As will be seen in the examples provided in Sec. 1.4B, angles 
that tum out to be negative point downward from the z axis in their direction of travel. 
Radii that tum out to be negative indicate concave surfaces whereas those that are 
positive indicate convex surfaces. 

EXERCISE 1.4-1 
Special Forms of the Ray-Transfer Matrix. Consider the following situations in which one of 
the four elements of the ray-transfer matrix vanishes: 
(a) Show that if A= 0, all rays that enter the system at the same angle leave at the same position, so 

that parallel rays in the input are focused to a single point at the output. 
(b) What are the special features of each of the systems for which B = 0, C = 0, or D = O? 

In the paraxial approximation (small angles, 
so that  sin x ≈ x)
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26 CHAPTER 1 RAY OPTICS 

8. Matrices of Simple Optical Components 
Free-Space Propagation 
Since rays travel along straight lines in a medium of uniform refractive index such as 
free space, a ray traversing a distance d is altered in accordance with y2 == y1 + 01 d 
and 02 == 01 . The ray-transfer matrix is therefore 

M== l d 
0 1 · (1.4-4) 

- d 

Refraction at a Planar Boundary 
At a planar boundary between two media of refractive indexes n 1 and n 2 , the ray 
angle changes in accordance with Snell's law n 1 sin 01 == n 2 sin 02 • In the paraxial 
approximation, n 101 n 2 02 • The position of the ray is not altered, y2 == y1 . The 
ray-transfer matrix is 

M== 

Refraction at a Spherical Boundary 

1 
0 

0 (1.4-5) 

The relation between 01 and 02 for paraxial rays refracted at a spherical boundary 
between two media is provided in (1.2-8). The ray height is not altered, y2 y1. The 
ray-transfer matrix is 

R 

1 0 
M== - (n2-n1) n 1 • (1.4-6) 

n2R n2 

Convex: R > O; concave: R< 0 

Transmission Through a Thin Lens 
The relation between 01 and 02 for paraxial rays transmitted through a thin lens off ocal 
length f is given in (1.2-11). Since the height remains unchanged y2 == y1 , we have 

f M-

Convex:/> O; concave: f < 0 

Reflection from a Planar Mirror 

1 
1 -- / 

0 
1 . (1.4-7) 

Upon reflection from a planar mirror, the ray position is not altered, y2 == y1 . Adopting 
the convention that the z axis points in the general direction of travel of the rays, i.e., 
toward the mirror for the incident rays and away from it for the reflected rays, we 
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C. Spherical Boundaries and Lenses 
We now examine the refraction of rays from a spherical boundary of radius R between 
two media of refractive indexes n 1 and n 2 . By convention, R is positive for a convex 
boundary and negative for a concave boundary. The results are obtained by applying 
Snell's law, which relates the angles of incidence and refraction relative to the norn1al 
to the surface, defined by the radius vector from the center e. These angles are to 
be distinguished from the angles 01 and 02 , which are defined relative to the z axis. 
Considering only paraxial rays making small angles with the axis of the system so that 
sin 0 0 and tan 0 0, the following properties may be shown to hold: 

A ray making an angle 01 with the z axis and meeting the boundary at a point of 
height y where it makes an angle 00 with the radius vector [see Fig. 1.2-12(a)] 
changes direction at the boundary so that the refracted ray makes an angle 02 
with the z axis and an angle 03 with the radius vector. The angle of incidence is 
therefore 01 + 02 while the angle of refraction is 03 , so that 
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Figure 1.2-12 Refraction at a convex spherical boundary (R > 0). 

(1.2-8) 

All paraxial rays originating from a point P 1 == y1, z1 in the z == z1 plane meet 
at a point P2 == Y2, z2 in the z == z2 plane, where 

and 

n1 n2 n2 - n1 -+-~---
Z1 Z2 R 

(1.2-9) 

(1.2-10) 

Refraction at a spherical boundary
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8. Matrices of Simple Optical Components 
Free-Space Propagation 
Since rays travel along straight lines in a medium of uniform refractive index such as 
free space, a ray traversing a distance d is altered in accordance with y2 == y1 + 01 d 
and 02 == 01 . The ray-transfer matrix is therefore 

M== l d 
0 1 · (1.4-4) 

- d 

Refraction at a Planar Boundary 
At a planar boundary between two media of refractive indexes n 1 and n 2 , the ray 
angle changes in accordance with Snell's law n 1 sin 01 == n 2 sin 02 • In the paraxial 
approximation, n 101 n 2 02 • The position of the ray is not altered, y2 == y1 . The 
ray-transfer matrix is 

M== 

Refraction at a Spherical Boundary 

1 
0 

0 (1.4-5) 

The relation between 01 and 02 for paraxial rays refracted at a spherical boundary 
between two media is provided in (1.2-8). The ray height is not altered, y2 y1. The 
ray-transfer matrix is 

R 

1 0 
M== - (n2-n1) n 1 • (1.4-6) 

n2R n2 

Convex: R > O; concave: R< 0 

Transmission Through a Thin Lens 
The relation between 01 and 02 for paraxial rays transmitted through a thin lens off ocal 
length f is given in (1.2-11). Since the height remains unchanged y2 == y1 , we have 

f M-

Convex:/> O; concave: f < 0 

Reflection from a Planar Mirror 

1 
1 -- / 

0 
1 . (1.4-7) 

Upon reflection from a planar mirror, the ray position is not altered, y2 == y1 . Adopting 
the convention that the z axis points in the general direction of travel of the rays, i.e., 
toward the mirror for the incident rays and away from it for the reflected rays, we 

prove this 
result!
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8. Matrices of Simple Optical Components 
Free-Space Propagation 
Since rays travel along straight lines in a medium of uniform refractive index such as 
free space, a ray traversing a distance d is altered in accordance with y2 == y1 + 01 d 
and 02 == 01 . The ray-transfer matrix is therefore 

M== l d 
0 1 · (1.4-4) 

- d 

Refraction at a Planar Boundary 
At a planar boundary between two media of refractive indexes n 1 and n 2 , the ray 
angle changes in accordance with Snell's law n 1 sin 01 == n 2 sin 02 • In the paraxial 
approximation, n 101 n 2 02 • The position of the ray is not altered, y2 == y1 . The 
ray-transfer matrix is 
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Refraction at a Spherical Boundary 
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between two media is provided in (1.2-8). The ray height is not altered, y2 y1. The 
ray-transfer matrix is 
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M== - (n2-n1) n 1 • (1.4-6) 

n2R n2 

Convex: R > O; concave: R< 0 
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length f is given in (1.2-11). Since the height remains unchanged y2 == y1 , we have 
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Convex:/> O; concave: f < 0 

Reflection from a Planar Mirror 
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1 -- / 
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Upon reflection from a planar mirror, the ray position is not altered, y2 == y1 . Adopting 
the convention that the z axis points in the general direction of travel of the rays, i.e., 
toward the mirror for the incident rays and away from it for the reflected rays, we 
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conclude that 02 == 01. The ray-transfer matrix is therefore the identity matrix 

z -------- z 

Reflection from a Spherical Mirror 

M== 1 
0 

0 
1 . (1.4-8) 

Using ( 1.2-1 ), and the convention that the z axis follows the general direction of the 
rays as they reflect from mirrors, we similarly obtain 

(-R) 

Concave: R < O; convex: R > 0 

M== 1 
2 
R 

0 
1 . (1.4-9) 

Note the similarity between the ray-transfer matrices of a spherical mirror (1.4-9) and 
a thin lens (1.4-7). A mirror with radius of curvature R bends rays in a manner that is 
identical to that of a thin lens with focal length f == -R 2. 

C. Matrices of Cascaded Optical Components 
A cascade of N optical components or systems whose ray-transfer matrices are 
M1 , M2 , ... , MN is equivalent to a single optical system of ray-transfer matrix 

) 

(1.4-10) 
Note the order of matrix multiplication: The matrix of the system that is crossed by the 
rays is first placed to the right, so that it operates on the column matrix of the incident 
ray first. A sequence of matrix multiplications is not, in general, commutative, although 
• • • • 1t 1s assoc1at1ve. 

EXERCISE 1.4-2 
A Set of Parallel Transparent Plates. Consider a set of N parallel planar transparent plates of 
refractive indexes n 1 , n 2 , ... nN and thicknesses d 1 , d2 , ... dN, placed in air (n == 1) normal to the 
z axis. Using induction, show that the ray-transfer matrix is 

I n1 n2 • • • 1 

I 
l z M== 

0 1 
( 1.4-11) 

Note that the order in which the plates are placed does not affect the overall ray-transfer matrix. What 
is the ray-transfer matrix of an inhomogeneous transparent plate of thickness d0 and refractive index 
n(z)? 

prove this 
result!
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Important remark: 

in all cases considered here, the determinant of the ray transfer matrix is
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conclude that 02 == 01. The ray-transfer matrix is therefore the identity matrix 

z -------- z 

Reflection from a Spherical Mirror 

M== 1 
0 

0 
1 . (1.4-8) 

Using ( 1.2-1 ), and the convention that the z axis follows the general direction of the 
rays as they reflect from mirrors, we similarly obtain 

(-R) 

Concave: R < O; convex: R > 0 

M== 1 
2 
R 

0 
1 . (1.4-9) 

Note the similarity between the ray-transfer matrices of a spherical mirror (1.4-9) and 
a thin lens (1.4-7). A mirror with radius of curvature R bends rays in a manner that is 
identical to that of a thin lens with focal length f == -R 2. 

C. Matrices of Cascaded Optical Components 
A cascade of N optical components or systems whose ray-transfer matrices are 
M1 , M2 , ... , MN is equivalent to a single optical system of ray-transfer matrix 

) 

(1.4-10) 
Note the order of matrix multiplication: The matrix of the system that is crossed by the 
rays is first placed to the right, so that it operates on the column matrix of the incident 
ray first. A sequence of matrix multiplications is not, in general, commutative, although 
• • • • 1t 1s assoc1at1ve. 

EXERCISE 1.4-2 
A Set of Parallel Transparent Plates. Consider a set of N parallel planar transparent plates of 
refractive indexes n 1 , n 2 , ... nN and thicknesses d 1 , d2 , ... dN, placed in air (n == 1) normal to the 
z axis. Using induction, show that the ray-transfer matrix is 

I n1 n2 • • • 1 

I 
l z M== 

0 1 
( 1.4-11) 

Note that the order in which the plates are placed does not affect the overall ray-transfer matrix. What 
is the ray-transfer matrix of an inhomogeneous transparent plate of thickness d0 and refractive index 
n(z)? 
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EXERCISE 1.4-3 
A Gap Followed by a Thin Lens. Show that the ray-transfer matrix of a distance d of free 
space followed by a lens of focal length f is 

f 

M== 

EXERCISE 1.4-4 

1 
1 -- ! 

d 
1 - g_ . 

f 
( 1.4-12) 

Imaging with a Thin Lens. Derive an expression for the ray-transfer matrix of a system com-
prised of free space/thin lens/free space, as shown in Fig. 1.4-3. Show that if the imaging condition 
(1/d 1 + 1/d 2 == 1/ f) is satisfied, all rays originating from a single point in the input plane reach the 
output plane at the single point y2 , regardless of their angles. Also show that if d 2 == f, all parallel 
incident rays are focused by the lens onto a single point in the output plane. 

f 

Figure 1.4-3 Single-lens imaging system. 

EXERCISE 1.4-5 
Imaging with a Thick Lens. Consider a glass lens of refractive index n, thickness d, and two 
spherical surfaces of equal radii R (Fig. l .4-4 ). Deter1nine the ray-transfer matrix of the system 
between the two planes at distances d1 and d2 from the vertices of the lens. The lens is placed in air 
(refractive index == 1). Show that the system is an imaging system (i.e., the input and output planes 
are conjugate) if 

where 

and 

1 -+-== f 
1 1 

Z1 == d1 + h, 

Z2 == d2 + h, 

1 
f 

nR 

R 

or 

n-ld 
-

n R • 

(1.4-13) 

(1.4-14) 

(1.4-15) 

(1.4-16) 

( 1.4-17) 

The points F 1 and F2 are known as the front and back focal points, respectively. The points P 1 and 
P 2 are known as the first and second principal points, respectively. Show the importance of these 
points by tracing the trajectories of rays that are incident parallel to the optical axis. 
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Propagation in periodic systems

1.2 SIMPLE OPTICAL COMPONENTS 15 

EXERCISE 1.2-4 
Proof of the Thin Lens Formulas. Using ( 1.2-8), along with the definition of the focal length 
given in (1.2-12), prove (1.2-11) and (1.2-13). 

It is emphasized once again that the foregoing relations hold only for paraxial rays. 
The presence of nonparaxial rays results in aberrations, as illustrated in Fig. 1.2-15. 

D. Light Guides 

Figure 1.2-15 Nonparaxial rays do not meet 
at the paraxial focus. The dashed envelope of the 
refracted rays is called the caustic curve. 

Light may be guided from one location to another by use of a set of lenses or mirrors, 
as illustrated schematically in Fig. 1.2-16. Since refractive elements (such as lenses) 
are usually partially reflective and since mirrors are partially absorptive, the cumula-
tive loss of optical power will be significant when the number of guiding elements 
is large. Components in which these effects are minimized can be fabricated (e.g., 
antireflection-coated lenses), but the system is generally cumbersome and costly. 

(a) 

Figure 1.2-16 Guiding light: (a) lenses; (b) mirrors; (c) total internal reflection. 

An ideal mechanism for guiding light is that of total internal reflection at the bound-
ary between two media of different refractive indexes. Rays are reflected repeatedly 
without undergoing refraction. Glass fibers of high chemical purity are used to guide 
light for tens of kilometers with relatively low loss of optical power. 

An optical fiber is a light conduit made of two concentric glass (or plastic) cylinders 
(Fig. 1.2-17). The inner, called the core, has a refractive index n 1, and the outer, called 

Example of periodic optical system

1.4 MATRIX OPTICS 29 

n 

h h ---d2-------i 
;.__--z1--- ----Z2----

Figure 1.4-4 Imaging with a thick lens. P 1 and P 2 are the principal points and F 1 and F 2 are the 
focal points. 

• 

D. Periodic Optical Systems 
A periodic optica1 system is a cascade of identical unit systems. An example is a 
sequence of equally spaced identical relay lenses used to guide light, as shown in 
Fig. 1.2-16(a). Another example is the reflection of light between two mirrors that 
form an optical resonator (see Sec. 10.2A); in that case, the ray repeatedly traverses 
the same unit system (a round trip of reflections). Even a homogeneous medium, such 
as a glass fiber, may be considered as a periodic system if it is divided into contiguous 
identical segments of equal length. We proceed to formulate a general theory of ray 
propagation in periodic optical systems using matrix methods. 

Difference Equation for the Ray Position 
A periodic system is composed of a cascade of identical unit systems (stages), each 
with a ray-transfer matrix A, B, C, D , as shown in Fig. 1.4-5. A ray enters the system 
with initial position y0 and slope 00 . To determine the position and slope Ym, 0m of 
the ray at the exit of the mth stage, we apply the ABCD matrix m times, 

A B m 

C D 

We can also iteratively apply the relations 

Yo 
0o · 

Ym+l == Aym + B0m 
0m+l == Gym + D0m 

(1.4-18) 

(1.4-19) 

(1.4-20) 

to determine (y 1, 01 from Yo, 0o , then Y2, 02 from Y1, 01 , and so on, using a 
software routine. 

A B Y1 
C D 01 

1 

A B 
C D 

2 

A B 
C D 

m-1 

A B Ym A B 
C D 0 C D m 

m m+ 1 

Figure 1.4-5 A cascade of identical optical systems. 

It is of interest to derive equations that govern the dynamics of the position Ym, 
m == 0, 1, ... , irrespective of the angle 0m. This is achieved by eliminating 0m from 

A periodic optical system can be studied by repeatedly applying the same ray transfer matrix
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Figure 1.4-4 Imaging with a thick lens. P 1 and P 2 are the principal points and F 1 and F 2 are the 
focal points. 
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Fig. 1.2-16(a). Another example is the reflection of light between two mirrors that 
form an optical resonator (see Sec. 10.2A); in that case, the ray repeatedly traverses 
the same unit system (a round trip of reflections). Even a homogeneous medium, such 
as a glass fiber, may be considered as a periodic system if it is divided into contiguous 
identical segments of equal length. We proceed to formulate a general theory of ray 
propagation in periodic optical systems using matrix methods. 

Difference Equation for the Ray Position 
A periodic system is composed of a cascade of identical unit systems (stages), each 
with a ray-transfer matrix A, B, C, D , as shown in Fig. 1.4-5. A ray enters the system 
with initial position y0 and slope 00 . To determine the position and slope Ym, 0m of 
the ray at the exit of the mth stage, we apply the ABCD matrix m times, 

A B m 

C D 

We can also iteratively apply the relations 

Yo 
0o · 

Ym+l == Aym + B0m 
0m+l == Gym + D0m 

(1.4-18) 

(1.4-19) 

(1.4-20) 

to determine (y 1, 01 from Yo, 0o , then Y2, 02 from Y1, 01 , and so on, using a 
software routine. 
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Figure 1.4-5 A cascade of identical optical systems. 

It is of interest to derive equations that govern the dynamics of the position Ym, 
m == 0, 1, ... , irrespective of the angle 0m. This is achieved by eliminating 0m from 
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(1.4-19) and (1.4-20). From (1.4-19) 

• 

Replacing m with m + 1 in (1.4-21) yields 

• 

Substituting (1.4-21) and (1.4-22) into (1.4-20) gives 

Ym+2 == 2bYm+l - F 2Ym, 

where 

2 

F 2 == AD - BC == <let M , 

and <let M is the determinant of M. 

(1.4-21) 

(1.4-22) 

(1.4-23) 
Recurrence Relation 

for Ray Position 

(1.4-24) 

(1.4-25) 

Equation (1.4-23) is a linear difference equation governing the ray position Ym· It 
can be solved iteratively by computing Y2 from Yo and Y1, then y3 from Y1 and Y2, and 
so on. The quantity y1 may be computed from y0 and 00 by use of ( 1.4-19) with m == 0. 

It is useful, however, to derive an explicit expression for Ym by solving the difference 
equation (1.4-23). As with linear differential equations, a solution satisfying a linear 
difference equation and the initial conditions is a unique solution. It is therefore appro-
priate to make a judicious guess for the solution of ( 1.4-23). We use a trial solution of 
the geometric form 

(1.4-26) 

where his a constant. Substituting (1.4-26) into (1.4-23) immediately shows that the 
trial solution is suitable provided that h satisfies the quadratic algebraic equation 

h2 - 2bh + F 2 == 0, (1.4-27) 

from which 

h == b ± j p2 - b2. ( 1.4-28) 

The results can be presented in a more compact form by defining the variable 

== cos- 1 b F , (1.4-29) 

so that b == F cos c.p, F 2 - b2 == F sin c.p, and therefore h == F cos c.p ± j sin c.p 
F exp ± jc.p , whereupon (1.4-26) becomes Ym == yoFm exp ± jmc.p . 

A general solution may be constructed from the two solutions with positive and 
negative signs by farming their linear combination. The sum of the two exponential 
functions can always be written as a harmonic (circular) function, so that 

Ym == Ymax.Fm sin mc.p + <.po , (1.4-30) 
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An approach based on the formalism of generating functions, suggests a solution of 
the following form (prove it if you know this formalism)
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(1.4-19) and (1.4-20). From (1.4-19) 
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Replacing m with m + 1 in (1.4-21) yields 

• 

Substituting (1.4-21) and (1.4-22) into (1.4-20) gives 

Ym+2 == 2bYm+l - F 2Ym, 

where 
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F 2 == AD - BC == <let M , 

and <let M is the determinant of M. 
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for Ray Position 
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Equation (1.4-23) is a linear difference equation governing the ray position Ym· It 
can be solved iteratively by computing Y2 from Yo and Y1, then y3 from Y1 and Y2, and 
so on. The quantity y1 may be computed from y0 and 00 by use of ( 1.4-19) with m == 0. 

It is useful, however, to derive an explicit expression for Ym by solving the difference 
equation (1.4-23). As with linear differential equations, a solution satisfying a linear 
difference equation and the initial conditions is a unique solution. It is therefore appro-
priate to make a judicious guess for the solution of ( 1.4-23). We use a trial solution of 
the geometric form 

(1.4-26) 

where his a constant. Substituting (1.4-26) into (1.4-23) immediately shows that the 
trial solution is suitable provided that h satisfies the quadratic algebraic equation 

h2 - 2bh + F 2 == 0, (1.4-27) 

from which 

h == b ± j p2 - b2. ( 1.4-28) 

The results can be presented in a more compact form by defining the variable 

== cos- 1 b F , (1.4-29) 

so that b == F cos c.p, F 2 - b2 == F sin c.p, and therefore h == F cos c.p ± j sin c.p 
F exp ± jc.p , whereupon (1.4-26) becomes Ym == yoFm exp ± jmc.p . 

A general solution may be constructed from the two solutions with positive and 
negative signs by farming their linear combination. The sum of the two exponential 
functions can always be written as a harmonic (circular) function, so that 

Ym == Ymax.Fm sin mc.p + <.po , (1.4-30) 
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so that b == F cos c.p, F 2 - b2 == F sin c.p, and therefore h == F cos c.p ± j sin c.p 
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A general solution may be constructed from the two solutions with positive and 
negative signs by farming their linear combination. The sum of the two exponential 
functions can always be written as a harmonic (circular) function, so that 
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where Ymax and c.p0 are constants to be determined from the initial conditions y0 and 
YI. In particular, setting m == 0 we obtain Ymax == Yo sin <.po. 

The parameter F is related to the determinant of the ray-transfer matrix of the unit 
system by F == <let M . It can be shown that regardless of the unit system, <let M 
n 1 n2, where n 1 and n2 are the refractive indexes of the initial and final sections 
of the unit system. This general result is easily verified for the ray-transfer matrices 
of all the optical components considered in this section. Since the determinant of a 
product of two matrices is the product of their determinants, it fallows that the relation 
<let M == n 1 n2 is applicable to any cascade of these optical components. For exam-
ple, if <let M1 == n1 n2 and <let M2 == n2 n3, then <let M2M1 == n2 n3 n1 n2 
n 1 n3 • In most applications the first and last stages are air (n == 1) n 1 == n 2, so that 
<let M == 1 and F == 1, in which case the solution for the ray position is 

Ym == Ymax sin mc.p + <.po . (1.4-31) 
Ray Position 

Periodic System 

We shall assume henceforth that F == 1. The corresponding solution for the ray angle 
is obtained by use of the relation 0m == Ym+l - Aym B, which is derived from 
(1.4-19). 

Condition for a Harmonic Trajectory 
For Ym to be a harmonic (instead of hyperbolic) function, c.p == cos- 1 b must be real. 
This reg uires that 

b < l or (1.4-32) 
Stability Condition 

If, instead, b > l, c.p is then imaginary and the solution is a hyperbolic function ( cosh 
or sinh), which increases without bound, as illustrated in Fig. 1.4-6( a). A harmonic 
solution ensures that Ym is bounded for all m, with a maximum value of Ymax• The 
bound b < 1 therefore provides a condition of stability (boundedness) of the ray 
trajectory. 

Since Ym and Ym+l are both harmonic functions, so too is the ray angle corre-
sponding to (1.4-31), by virtue of (1.4-21) and trigonometric identities. Thus, 0m == 
0max sin mc.p + c.p1 , where the constants 0max and c.p1 are deter1nined by the initial 
conditions. The maximum angle 0max must be sufficiently small so that the paraxial 
approximation, which underlies this analysis, is applicable. 

Condition for a Periodic Trajectory 
The harmonic function (1.4-31) is periodic in m if it is possible to find an integers such 
that Ym+s == Ym for all m. The smallest integer is the period. The ray then retraces its 
path after s stages. This condition is satisfied if sc.p == 21rq, where q is an integer. 
Thus, the necessary and sufficient condition for a periodic trajectory is that c.p 21r is a 

is periodic with period s == 11 stages. This case is illustrated in Fig. 1.4-6(b ). Periodic 
optical systems will be revisited in Chapter 7. 
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In the case of mirrors, the determinant

therefore 

and the solution is  
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detM = 1
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where Ymax and c.p0 are constants to be determined from the initial conditions y0 and 
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product of two matrices is the product of their determinants, it fallows that the relation 
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Ray Position 

Periodic System 

We shall assume henceforth that F == 1. The corresponding solution for the ray angle 
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Stability Condition 
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is periodic with period s == 11 stages. This case is illustrated in Fig. 1.4-6(b ). Periodic 
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Ray confinement in a Fabry-Perot resonant cavity 
(simple geometrical optics approach)

In this discussion, we limit ourselves to 

• paraxial rays
• meridional rays (rays that lie in a plane through the optical 

axis)

The system is periodic, with round-trip transfer matrix

i.e., 

378 CHAPTER 10 RESONATOR OPTICS 

10.2 SPHERICAL-MIRROR RESONATORS 

The planar-mirror resonator configuration discussed in the preceding section is highly 
sensitive to misalignment. If the mirrors are not perfectly parallel, or the rays are not 
perfectly normal to the mirror surfaces, they undergo a sequence of lateral displace-
ments that eventually causes them to wander out of the resonator (see Fig. 10.1-1). 
Spherical-mirror resonators, in contrast, provide a more stable configuration for the 
confinement of light that renders them less sensitive to misalignment under appropriate 
geometrical conditions. 

A spherical-mirror resonator is constructed from two spherical mirrors of radii R 1 
and R2, separated by a distance d (Fig. 10.2-1). A line connecting the centers of 
the mirrors defines the optical axis (z axis), about which the system exhibits circular 
symmetry. Each of the mirrors can be concave (R < 0) or convex (R > 0). The planar-
mirror resonator is a special case for which R 1 = R2 = oo. Making use of the results 
set forth in Sec. 1 .4D, we first examine the conditions required for ray confinement. 
Then, using the results derived in Chapter 3, we determine the resonator modes and 
resonance frequencies. Finally, we briefly discuss the implications of finite mirror size. 

z 

A. Ray Confinement 

Figure 10.2-1 Geometry of a spherical-mirror 
resonator. In this illustration both mirrors are 
concave (their radii of curvature are negative). 

We begin with ray optics to determine the conditions of confinement for light rays in 
a spherical-mirror resonator. We consider only meridional rays (rays lying in a plane 
that passes through the optical axis) and limit our consideration to paraxial rays (rays 
that make small angles with the optic axis). The matrix-optics methods introduced in 
Sec. 1.4, which are valid only for meridional and paraxial rays in a circularly symmetric 
system, are thus suitable for studying the trajectories of these rays as they travel inside 
the resonator. 

A resonator is a periodic optical system, since a ray travels through the same system 
after a round trip of two reflections. We may therefore make use of the analysis of 
periodic optical systems presented in Sec. 1.4D. Let Ym and 0m be the position and 
inclination of an optical ray after m round trips, as illustrated in Fig. J 0.2-2. Given Ym 
and 0m, we determine Ym+l and 0m+l by tracing the ray through the system. 

For paraxial rays, where all angles are small, the relation between (Ym+ 1, 0m+ 1) and 
(Ym, 0m) is linear and can be written in matrix form as 

[Ym+l] = [A B] [Ym] . 0m+l C D 0m (10.2-1) 

Beginning at the bottom-left of Fig. 10.2-2 with y0 and 00 , the round-trip ray-transfer 
matrix for the ray pattern depicted in Fig. 10.2-2 is 

(10.2-2) 
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Figure 10.2-2 The position and inclina-
tion of a ray after m round trips are rep-
resented by Ym and 0m, respectively, where 
m = 0, 1, 2, .... In this diagram, 01 < 0 since 
the ray is directed downward. Angles are 
exaggerated for the purposes of illustration; 
all rays are paraxial so that sin 0 ::::; tan 0 ::::; 
0 and the propagation distance of all rays 
between the mirrors is ::::; d . 

This cascade of ray-transfer matrices represents, from right to left [see (1.4-4) and 
(1.4-9)]: 

Propagation a distance d through free space 
Reflection from a mirror of radius R2 
Propagation a distance d through free space 
Reflection from a mirror of radius R 1 

As shown in Sec. 1.40, the solution of the difference e~uation (10.2-1) is Ym = 
YmaxFmsin(m<p + <po), where F 2 =AD-BC, <p = cos- (b/F), b =(A+ D)/2, 
and Ymax and <po are constants to be determined from the initial position and inclination 
of the ray. For the case at hand F = l, so that 

Ym = Ymax sin(m<p + <po), (10.2-3) 

<p = cos- 1 b, (10.2-4) 

The solution (10.2-3) is harmonic, and therefore bounded, provided <p = cos- 1 b is 
real. This is ensured if lbl ::; 1, i.e., if -1 ::; b ::; 1, so that 

(10.2-5) 

It is convenient to write this condition in terms of the quantities 91 = 1 + d / R 1 and 
92 = 1 + d / R2, which are known as the g parameters: 

I o "' """ "' 1. 
(10.2-6) 

Confinement Condition 

The resonator is said to be stable when this condition is satisfied. This result also 
emerges from wave optics, as will be demonstrated subsequently [see (10.2-17)]. 

When the confinement condition (10.2-6) is not satisfied, <pis imaginary so that Ym 
in (10.2-3) becomes a hyperbolic sine function of m that increases without bound. The 
resonator is then said to be unstable. At the boundary of the confinement condition 
(when the inequalities are equalities), the resonator is said to be conditionally stable. 

A useful graphical representation of the confinement condition (Fig. 10.2-3) identi-
fies each combination (91, 92) of the two 9 parameters of a resonator as a point in a 92 
versus 91 diagram. The left inequality in (10.2-6) is equivalent to {g1 2:: 0 and 92 2:: 
O; or 91 ::; 0 and 92 ::; O} so that all stable points (91, 92) must lie in the first or third 
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(R1<0, R2>0)

Flgure 9.2-3 Resonator stability diagram. A spherical-mirror resonator is stable if the parame-
8 =1+d/R, and 82 = 1 + d/R, lie in the unshaded regions bounded by the lines

8, = 0 and g, = 0, and the hyperbola g, = 1/8. R is negative for a concave mirror and positive
for a convex mirror. Various special configurations are indicated by letters. All symmetrical
esonators lie along the line 82 = 81
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Fabry-Perot resonant cavity with unequal mirrors 

It is easy to see that for an FP cavity with unequal mirrors:

• intracavity field

• reflected field 

• transmitted field

• finesse:  

In Advanced Virgo
<latexit sha1_base64="RSMadsQEAvNGV2Cw1QVrBZJOBAE="></latexit>

ri = 0.993; re = 0.999998

) F ⇡ 450

(i = input mirror; e = end mirror)
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7.1 OPTICS OF DIELECTRIC LAYERED MEDIA 255 

The parameter :f, called the finesse, is a monotonic increasing function of the re-
flectance product r 1 r 2 , and is a measure of the quality of the etalon. For example, 
if r 1 r 2 == 0.99, then :f 313. 

As described in Sec. 2.58, the transmittance 'J' is a periodic function of <p with period 
1r. It reaches its maximum value of 'J max, which equals unity if r 1 == r 2 , when <pis 
an integer multiple of 1r. When the finesse :f is large (i.e., when r 1 r 2 1), 'J becomes 
a sharply peaked function of <p of approximate width 1r :f. Thus, the higher the finesse 
:f, the sharper the peaks of the transmittance as a function of the phase <p. 

The phase <p == nk 0 d == w c d is proportional to the frequency, so that the 
condition <p == 1r corresponds tow == wp, or v == vp, where 

C 
Vp == 2d' 

7rC 
Wp- --

d 
(7.1-35) 

Free Spectral Range 

is called the free spectral range. It follows that the transmittance as a function of 
frequency, 'J v , is a periodic function of period vp, 

1 + 2:f 1r 2 sin 2 1rv vp ' 
(7 .1-36) 

Transmittance 
(Fabry-Perot Etalon) 

as illustrated in Fig. 7 .1-5. It reaches its peak value of 'J' max at the resonance frequencies 
vq == qvp, where q is an integer. When the finesse :f >> 1, 'J' v drops sharply as 
the frequency deviates slightly from vq, so that 'J' v takes the form of a comb-like 
function. The spectral width of each of these high-transmittance lines is 

bv == Vp 
:f ' 

(7.1-37) 

i.e., is a factor of :f smaller than the spacing between the resonance frequencies. 
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Figure 7 .1-5 Intensity transmittance and reflectance, 'J and == 1 - 'J, of the Fabry-Perot etalon 
as a function of the angular frequency w. 

The Fabry-Perot etalon may be used as a sharply tuned optical filter or a spectrum 
analyzer. Because of the periodic nature of the spectral response, however, the spectral 
width of the measured light must be narrower than the free spectral range vp == c 2d 
in order to avoid ambiguity. The filter is tuned (i.e., the resonance frequencies are 
shifted) by adjusting the distance d between the mirrors. A slight change in mir-
ror spacing l:::,,.d shifts the resonance frequency vq == qc 2d by a relatively large 
amount l:::,,.vq == - qc 2d 2 l:::,,.d == -vq lld d. Although the frequency spacing vp 

Intensity transmittance and reflectance of a Fabry-Perot resonant cavity. 



Now, consider the complex (amplitude) reflection coefficient of the FP cavity

By decomposing F in real and imaginary parts, we see that this equation represents the coordinates of a plane curve, 
expressed here in parametric form. 

Letting   we rewrite the same equation in the form   
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The r.h.s. can be simplified further, and we obtain (prove it!):

which is the equation of a circle with center  

and radius
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tighter. A measure of how sensitive the cavity is to changes
in L or ! is the finesse of the cavity, F, and is defined as the
full width at half maximum of the amplitude of the standing
wave inside the cavity, or linewidth, divided by the spacing
between resonances, or free spectral range. If we consider !
fixed and allow L to vary, then the finesse is given by

F"
#L lw
!/2 , $19%

where #Llw is the linewidth. As we have said, this linewidth
depends on the reflectivities of the mirrors, so we may as
well define the finesse in terms of these reflectivities. For any
Fabry–Perot cavity, the finesse can be written as25

F!
&!riro
1"riro

. $20%

Now let’s discuss how the reflectivities of the mirrors af-
fect the behavior of the cavity. If we plot the reflection co-
efficient of a Fabry–Perot cavity in the complex plane, we
find that it is always a circle.26 The properties of this circle
depend on the properties of the cavity, and there are three
cases that we need to consider, ri!ro , ri#ro , and ri$ro .
The reflection coefficients for each case are illustrated in Fig.
11. Far from resonance, the reflection coefficient for each
case is close to "1, and its phase is relatively insensitive to
changes in L or !. As we approach resonance, say by sweep-
ing L at a constant rate, the reflection coefficient advances
around the circle in the counterclockwise direction, picking
up speed as it approaches the rightmost edge of the circle. On
resonance, the reflection coefficient lies on the rightmost
edge of the circle, and its phase changes the most rapidly for
a given change in L . After we pass through resonance, the
reflection coefficient tracks along the top half of the circle
and approaches "1 again, slowing down as it gets farther
from resonance. It is this sensitivity in phase to changes in L
near resonance that makes a Fabry–Perot cavity a useful
device for measuring small changes in distance between the
mirrors, and that is why we want to use it in our gravitational
wave detector.
If both mirrors are lossless and have equal reflectivities,

then on resonance the net reflected beam vanishes. Sufficient
power builds up inside the cavity that the leakage beam ex-
actly cancels the promptly reflected beam, and the reflection
coefficient goes to zero. All of the incident power gets trans-
mitted through the cavity. When this condition is satisfied

(ri!ro and both mirrors are lossless%, the cavity is referred
to as critically coupled. If the output mirror is much more
reflective than the input mirror, and again both are lossless,
then very little light gets transmitted through the cavity, even
on resonance. The leakage beam $through the input mirror%
has a larger amplitude than the promptly reflected beam, and
there is some net reflected light even on resonance. In this
case the cavity is referred to as overcoupled. If the output
mirror is less reflective than the input mirror, then again little
light gets transmitted through the cavity on resonance. This
time, however, it is the promptly reflected beam that domi-
nates, and the phase of the net reflected light is "180°, as
shown in Fig. 11. $Note that the leakage beam is 180° out of
phase with the promptly reflected beam on resonance, re-
gardless of the coupling.%
If we want to use Fabry–Perot cavities as delay lines in

the arms of a Michelson interferometer and recombine the
light back at the beam splitter, and especially if we want to
implement power recycling, it is best for us to use a strongly
over-coupled cavity. In this case essentially all of the light is
reflected when the cavity is on resonance, and the phase of
this reflected light is very sensitive to deviations from reso-
nance, as shown in Fig. 12.
Near resonance, the reflection coefficient for an over-

coupled, lossy Fabry–Perot cavity of length L and finesse
Fac is approximately

rx ,y!! 1"
1
&

Fac' " #1%i8Fac
(Lx ,y

! $ , $21%

where (Lx ,y represents a small length deviation in either the
x or y arm from perfect resonance, and we have approxi-
mated the finesse of an overcoupled cavity by

Fac)
2&

t i
2 . $22%

Fig. 11. The amplitude reflection coefficients for Fabry–Perot cavities are
circles in the complex plane; ri and ro are the amplitude reflection coeffi-
cients of the input and output mirrors, respectively.

Fig. 12. On resonance, a small change in the length of a Fabry–Perot cavity
dramatically changes its reflection coefficient. The amplitude reflection co-
efficient for an over-coupled Fabry–Perot cavity is plotted. Resonance is at
%1, and the plot uses LIGO values for the mirrors $Ref. 27%. 1000 points are
plotted uniformly over a length of !/2.
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tighter. A measure of how sensitive the cavity is to changes
in L or ! is the finesse of the cavity, F, and is defined as the
full width at half maximum of the amplitude of the standing
wave inside the cavity, or linewidth, divided by the spacing
between resonances, or free spectral range. If we consider !
fixed and allow L to vary, then the finesse is given by

F"
#L lw
!/2 , $19%

where #Llw is the linewidth. As we have said, this linewidth
depends on the reflectivities of the mirrors, so we may as
well define the finesse in terms of these reflectivities. For any
Fabry–Perot cavity, the finesse can be written as25
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Now let’s discuss how the reflectivities of the mirrors af-
fect the behavior of the cavity. If we plot the reflection co-
efficient of a Fabry–Perot cavity in the complex plane, we
find that it is always a circle.26 The properties of this circle
depend on the properties of the cavity, and there are three
cases that we need to consider, ri!ro , ri#ro , and ri$ro .
The reflection coefficients for each case are illustrated in Fig.
11. Far from resonance, the reflection coefficient for each
case is close to "1, and its phase is relatively insensitive to
changes in L or !. As we approach resonance, say by sweep-
ing L at a constant rate, the reflection coefficient advances
around the circle in the counterclockwise direction, picking
up speed as it approaches the rightmost edge of the circle. On
resonance, the reflection coefficient lies on the rightmost
edge of the circle, and its phase changes the most rapidly for
a given change in L . After we pass through resonance, the
reflection coefficient tracks along the top half of the circle
and approaches "1 again, slowing down as it gets farther
from resonance. It is this sensitivity in phase to changes in L
near resonance that makes a Fabry–Perot cavity a useful
device for measuring small changes in distance between the
mirrors, and that is why we want to use it in our gravitational
wave detector.
If both mirrors are lossless and have equal reflectivities,

then on resonance the net reflected beam vanishes. Sufficient
power builds up inside the cavity that the leakage beam ex-
actly cancels the promptly reflected beam, and the reflection
coefficient goes to zero. All of the incident power gets trans-
mitted through the cavity. When this condition is satisfied

(ri!ro and both mirrors are lossless%, the cavity is referred
to as critically coupled. If the output mirror is much more
reflective than the input mirror, and again both are lossless,
then very little light gets transmitted through the cavity, even
on resonance. The leakage beam $through the input mirror%
has a larger amplitude than the promptly reflected beam, and
there is some net reflected light even on resonance. In this
case the cavity is referred to as overcoupled. If the output
mirror is less reflective than the input mirror, then again little
light gets transmitted through the cavity on resonance. This
time, however, it is the promptly reflected beam that domi-
nates, and the phase of the net reflected light is "180°, as
shown in Fig. 11. $Note that the leakage beam is 180° out of
phase with the promptly reflected beam on resonance, re-
gardless of the coupling.%
If we want to use Fabry–Perot cavities as delay lines in

the arms of a Michelson interferometer and recombine the
light back at the beam splitter, and especially if we want to
implement power recycling, it is best for us to use a strongly
over-coupled cavity. In this case essentially all of the light is
reflected when the cavity is on resonance, and the phase of
this reflected light is very sensitive to deviations from reso-
nance, as shown in Fig. 12.
Near resonance, the reflection coefficient for an over-

coupled, lossy Fabry–Perot cavity of length L and finesse
Fac is approximately

rx ,y!! 1"
1
&

Fac' " #1%i8Fac
(Lx ,y

! $ , $21%

where (Lx ,y represents a small length deviation in either the
x or y arm from perfect resonance, and we have approxi-
mated the finesse of an overcoupled cavity by
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Fig. 11. The amplitude reflection coefficients for Fabry–Perot cavities are
circles in the complex plane; ri and ro are the amplitude reflection coeffi-
cients of the input and output mirrors, respectively.

Fig. 12. On resonance, a small change in the length of a Fabry–Perot cavity
dramatically changes its reflection coefficient. The amplitude reflection co-
efficient for an over-coupled Fabry–Perot cavity is plotted. Resonance is at
%1, and the plot uses LIGO values for the mirrors $Ref. 27%. 1000 points are
plotted uniformly over a length of !/2.
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• ri = re,    critical coupling
At resonance the reflected beam vanishes, all the 
incident power is transmitted through the cavity.

• ri < re,    overcoupling
The leakage beam that bounces back from the cavity has 
larger amplitude than the promptly reflected beam, and 
there is reflection even at resonance, with positive 
amplitude reflection coefficient. 

• ri > re,    undercoupling
The leakage beam has a smaller amplitude than the 
promptly reflected beam and there is reflection even at 
resonance, with negative amplitude reflection 
coefficient. 

Normally, GW interferometers are operated with 
overcoupled FP cavities. 
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resonance condition

Amplitude ratio in the case of the Advanced Virgo mirrors.
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Following a length change in one arm

Then, expanding about resonance, so that                             and 
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When we include losses (e.g., due to mirror imperfections), we find the arm reflectances

This is the reflectance for the carrier. 

For the sidebands we can assume that they are completely reflected by the input mirror with -1 amplitude reflectance.

The FP cavities act as individual mirrors, and their length is the same. The equivalent 
Michelson interferometer has arms that have only few meters, and the Schnupp 
asymmetry is applied to these short arms.  
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Close to resonance we find that the full transfer function of the Michelson inteferometer with FP arms is

• Carrier

• Sidebands
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Total electric field at the output port (Michelson interferometer with FP arms)
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Total power at the output port
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Power recycling
3.2 Interferometer Sensitivity 21

Fig. 3.3 Scheme of a
Michelson interferometer
with Fabry Perot cavities on
its arms and a power
recycling mirror

The other parameter that can improve the sensitivity is the input power, P0. Again
it is not straightforward to increase the power of the laser since it arises technical
problems, so an alternative was proposed: an additional mirror.

At Dark Fringe, the two beams that recombine at the BS are in destructive inter-
ference. This means that in the ideal case there is no light arriving to the detection
photodiode. Instead, all the power is coming back towards the laser source. The idea
was to add a mirror between the BS and the laser in order to recycle all the power
that is coming back, as it can be seen in Fig. 3.3.

This way a new resonant cavity is created, the Power Recycling Cavity, and the
effective power impinging on the BS is increased by the optical gain of the cavity
GPR . It can be calculated as:

GPR =
(

tPR

1 − rPR · rM ICH

)2

(3.18)

where tPR, rPR are the transmission and reflectivity of the new mirror, also called
Power Recycling mirror or PR, and rM ICH is the reflectivity of the Michelson
enhanced by the presence of the Fabry-Perot cavities, which depends on the inter-
ference condition at the BS.

Knowing that the effective power is increased by GPR , it is straightforward to
evaluate the impact on hshot :

h̃shot =
1

GFP
· 1
k · L ·

√
hPν

GPR · P0 · (r21 + r22 )
· 1
√
1 −

√
1 − C2

·
√

1+
(

f
fc

)2

(3.19)
In this case the sensitivity is increased by a factor

√
GPR , which for Advanced Virgo

is ∼6.
Finally, it is foreseen to add an extra cavity to the Advanced Virgo detector in

order to increase further the sensitivity. The target is to recycle the signal produced
by the passage of a GW. For this purpose a mirror is added between the BS and the

Scheme of a Michelson interferometer with 
Fabry Perot cavities in its arms and a power 
recycling mirror 

Part of the power in the Michelson interferometer would head back 
towards the laser, and be lost. 

The purpose of the power recycling cavity is that of making the 
power flow unidirectional, as in a standard FP cavity. 

The recycling cavity acts as an additional FP cavity, where one of the 
mirrors is the power recycling mirror, and the other one is the whole 
interferometer with its FP arms. 

In this case we wish to trasmit forward as much radiation as possible, 
while the backwards reflection should be as little as possible. 

Clearly, the (amplitude) transmission coefficient of the cavity is
 

where
 
• rc = recycling cavity
• ifo = interferometer
• bs = beam splitter
• rm = recycling mirror
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arms, reflect off the end mirrors, and recombine to interfere
back at the beam splitter.20 The light emitted at the observa-
tion or antisymmetric port provides a measure of the differ-
ence between the lengths of the interferometer’s arms. !The
symmetric port, from which light returns to the laser, also
contains information about the relative arm lengths. Conser-
vation of energy requires that the power coming out of the
symmetric and antisymmetric ports, along with any power
lost in the instrument, accounts for all of the input power."
Let us consider quantitatively the response of a simple

Michelson interferometer to a gravitational wave. It is not
difficult to derive an expression for the electric field at the
output of the interferometer, Eout , as a function of the elec-
tric field at its input, E in ,

Eout!
1
2 !rxeik2!x"ryeik2!y"E in . !1"

Here !x and !y are the lengths of the two arms, k is the wave
number for the light we are using, and rx and ry are the
amplitude reflectivities of the end mirrors. In our convention,
a perfectly reflecting mirror has r!"1.
The power falling on the photodiode in Fig. 2 is the square

of the magnitude of the electric field, !Eout!2, or, for perfectly
reflecting end mirrors,

Pout!P in cos2#k!!x"!y"$ , !2"

where P in!!E in!2 is the power entering the interferometer,
provided by the laser in Fig. 2. This output power, and hence
the voltage produced by the photodiode, varies sinusoidally
with the difference in arm lengths, as shown in Fig. 3. If we
let the arm lengths in the absence of a gravitational wave be
!x and !y , then we can write the total arm length as !x
#%!x and !y#%!y , where a gravitational wave induces the
perturbations %!x and %!y . If we write the strain induced by
the gravitational wave as

h&
%!x"%!y

!
, !3"

then we can write the power at the output of the interferom-
eter as

Pout!P in cos2#k!'!#!h "$ , !4"

where '!!!x"!y is the asymmetry in the arm lengths in
the absence of a signal, and the average arm length is !
!(!x#!y)/2. In this paper we will assume that the gravita-
tional wave strain is very small—small enough that k!h
$1. We can then choose an operating point at some '! and
look at the small perturbations in the output power around
that point that the gravitational wave produces. We can de-
scribe this small-signal response mathematically by a Taylor
expansion about '! .

Pout!P in cos2!k'! "#P in
(

(u cos
2u"

u!k'!

!k!h "#¯ .

!5"

The response of our simple Michelson interferometer to a
gravitational wave strain h is proportional to the derivative
of the output power with respect to '! , so the obvious thing
to do is to operate at the point where that derivative is maxi-
mum, which is point 1 in Fig. 3. At this point k'!!)/4, and

Pout*
P in
2 #1"2k!h$ . !6"

Unfortunately, we are then left with a fairly large dc term,
P in cos2(k'!)!Pin/2 in this case, which will fluctuate if '!
varies due to any perturbations on the mirrors, whether it be
a gravitational wave, or seismic disturbance, etc. More im-
portantly, this dc term is proportional to P in , which can fluc-
tuate even if the mirrors remain still.
Measuring small changes in a large signal is seldom an

effective way to do experimental physics. If the amplitude of
the gravitational wave we want to study is very small, as is
too often the case, fluctuations in the dc term described
above can completely obscure our signal. What we need is a
way to reduce or even eliminate the dc term while retaining
and, if possible, boosting our signal. How we meet these two
goals is the subject of this paper.

Fig. 2. A basic Michelson interferometer is sensitive to the kinds of strain a
gravitational wave will produce. Incident laser light is split by a beam split-
ter, sent down orthogonal paths along the x and y axis, reflected from mir-
rors at the ends of these paths, and recombined back at the beam splitter. The
interference between these two return beams produces a net intensity that is
sensitive to differential changes in the lengths of the arms.

Fig. 3. The intensity of the light at the observation port versus the difference
in arm lengths !units of +, the wavelength of the light". Operating at point 1
maximizes the change in power for a given change in arm lengths, but also
makes the instrument sensitive to intensity noise in the light source. Oper-
ating at point 2 eliminates this problem, but, in a simple Michelson inter-
ferometer, it reduces the signal to a second-order effect.

367 367Am. J. Phys., Vol. 71, No. 4, April 2003 E. D. Black and R. N. Gutenkunst

81

Recycled power

Sidebands are off-resonance with respect to the F-P arm cavities, therefore  , so that the 
reflectivity is given by the light going back to the symmetric port 

while the interferometer transmission coefficient represents light 
moving towards the antisymmetric port, and corresponds to the 
transfer function that we have just found
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Using these values 

we find the reflection coefficient of the power recycling cavity

from which – after substitution of the ifo values – we see that the resonance condition is

and that the reflected field vanishes for 

which requires an adjustment of the Schnupp asymmetry to satisfy this constraint as well.
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On the whole, on resonance  there is no reflection and the transmission coefficient for sidebands is

Similar calculations can be carried out for the carrier beam and one finally finds the transfer function of the complete 
interferometer

So that the voltage signal at the end of the detection chain is 
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Power recycling

The complete setup of the power recycling system must take into account that:

• The carrier field must be on resonance in the arm Fabry-Perot cavities
• The carrier field must be on resonance  in the power recycling cavity to enhance the effective input power as much as possible

• The arm FP stabilization feedback uses the sidebands as phase reference; for this reason, the sidebands must be off-resonance in 
the arm cavities and reflect off the input mirrors of the arm FPs

• The sidebands must be on resonance in the power recycling cavity, otherwise, they would not reach the input mirrors of the arm 
FPs

• A phase reference is also needed to build up an error signal for power recycling cavity; for this reason, it is necessary to use a 
modulation frequency that is not resonant in the power recycling cavity

• the power recycling cavity of Virgo needs a special consideration due to its optical configuration which is very close to the limit 
of stability since 1 − g1g2 = 0.19 × 10−5.
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FIG. 1: A Michelson interferometer with Farby-Perot cavi-
ties placed inside the arms. The beam splitter splits the into
two seperate beams with each traveling down an arm ranging
about 4 kilometers. The cavities placed inside allow for the
light travel longer distances while also increasing the power
inside the cavity, allowing for the interferometer’s sensativity
and resolution to increase so when a gravitational wave dis-
turbs the light by changing the distance the light travels, the
photodiode can detect the change.

shows how much the beam diverges best described by the
equation

⇥ = 2✓ = 2
�

⇡w0
(1)

with � being the wavelength of the laser. Notice how
there is an inverse relation between the beam waist w0

and divergence angle ⇥. This is important because we
do not wish to create a beam in which it diverges a lot.
The Rayleigh range ZR is also a↵ected for this for a beam
with a large waist will have a long Rayleigh range and
vice versa. w(z) describes the beam size at a certain
position in the gaussian beam, and the size is describes
by,

w(z) = w0

r
1 +

z

zr

2
. (2)

HIGHER ORDER MODES

The gaussian beam is called the fundamental mode or
TEM00 because it belongs in a family of modes called
Hermite-Gaussian (HG) and Laguerre-Gaussian modes.
The di↵erence between the these two families of modes
is the Hermite Gaussian intensity distribuations have a
retangular shape that can be described in cartesian co-
ordinates while the Laguerre Gaussian modes are better

FIG. 2: A picture showing the main characteristics of a gaus-
sian beam. ZR is unique in that the beam size will always bep
2w0

bigger than the beam waist. b is just showing the overall
distance between the Rayleigh range since there are two

rayleigh ranges for each side of the beam waist.

described in cylindircal coodinates due to their inten-
sity distributions being more circular than rectangular
[3]. The gaussian beam is the lowest mode for each of
these families. Our focus is more oriented with the for-
mation of Laguerre-Gaussian (LG) modes because we will
be introducing these modes in the form of modulations
to create our own mode mismatch and compare it an pre-
existing mode mismatch by comparing the beat betwee
the two. Figure 3 shows the intensity distributions of the
Laguerre-Gaussian modes as we want to see the TEM10

mode when we introduce a modulation onto the laser.

FIG. 3: The Intensity profile of the Laguerre-Gaussian modes.
We wish to see the LG10 when we apply the modulation with
the use of an electro optical lens. Notice also how the Gaus-
sian beam (TEM00) is the lowest mode for the LG modes,
which is also the lowest modes for the HG modes [4].

>-,.(6#$%#8.%&$,&(%$1.6+"/%8,(."/.
A#'),++,47#)((%#&.2"5,(9.
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Fig. 3.2 Scheme of a
Michelson interferometer
with Fabry-Perot cavities on
its arms

The extra phase accumulated due to a change on the length of a Fabry-Perot cavity
is equal to:

δφFP = 2 · k · 2 · F
π

· δL (3.15)

The effect of this δL on the phase is increasedwith respect to a singlemirror by a factor
GFP = 2 ·F

π
usually known as optical gain of the cavity. However, the behaviour of

a Fabry-Perot cavity depends on the frequency. The storage time is a parameter that
gives the time needed to “fill” a resonant cavity. If the change on the length is faster
than this time, its effects are attenuated by the cavity (it acts as a low-pass filter).
Taking in account the frequency behaviour of the cavity we can write:

δφFP = 2 · k · GFP · δL
√
1+

(
f
fc

)2
(3.16)

where fc = c
4FL is the cut-off frequency over which the effects start to be attenuated

by the cavity. In the case of Advanced Virgo, for Fabry-Perot cavities of F ∼ 450
and arm lengths of 3 km the cut-off frequency is around 50 Hz.

Now we can repeat a reasoning analogous to the one in the previous section to
evaluate the impact of the shot noise on the sensitivity when we add Fabry-Perot
cavities in the arms. The minimal strain that can be detected in this case is:

h̃shot =
1

GFP
· 1
k · L ·

√
hPν

P0 · (r21 + r22 )
· 1
√
1 −

√
1 − C2

·
√

1+
(

f
fc

)2

(3.17)

Comparing it to the expression in Eq. 3.13 it can be seen that the sensitivity is
improved by a factor GFP , which in the case of the Advanced Virgo arm cavities is
∼290.
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Fig. 3.3 Scheme of a
Michelson interferometer
with Fabry Perot cavities on
its arms and a power
recycling mirror

The other parameter that can improve the sensitivity is the input power, P0. Again
it is not straightforward to increase the power of the laser since it arises technical
problems, so an alternative was proposed: an additional mirror.

At Dark Fringe, the two beams that recombine at the BS are in destructive inter-
ference. This means that in the ideal case there is no light arriving to the detection
photodiode. Instead, all the power is coming back towards the laser source. The idea
was to add a mirror between the BS and the laser in order to recycle all the power
that is coming back, as it can be seen in Fig. 3.3.

This way a new resonant cavity is created, the Power Recycling Cavity, and the
effective power impinging on the BS is increased by the optical gain of the cavity
GPR . It can be calculated as:

GPR =
(

tPR

1 − rPR · rM ICH

)2

(3.18)

where tPR, rPR are the transmission and reflectivity of the new mirror, also called
Power Recycling mirror or PR, and rM ICH is the reflectivity of the Michelson
enhanced by the presence of the Fabry-Perot cavities, which depends on the inter-
ference condition at the BS.

Knowing that the effective power is increased by GPR , it is straightforward to
evaluate the impact on hshot :

h̃shot =
1

GFP
· 1
k · L ·

√
hPν

GPR · P0 · (r21 + r22 )
· 1
√
1 −

√
1 − C2

·
√

1+
(

f
fc

)2

(3.19)
In this case the sensitivity is increased by a factor

√
GPR , which for Advanced Virgo

is ∼6.
Finally, it is foreseen to add an extra cavity to the Advanced Virgo detector in

order to increase further the sensitivity. The target is to recycle the signal produced
by the passage of a GW. For this purpose a mirror is added between the BS and the
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Fig. 3.4 Scheme of a
Michelson interferometer
with Fabry Perot cavities on
its arms, a power recycling
mirror and a signal recycling
mirror

Detection photodiode as shown in Fig. 3.4. This configuration is known as Signal
Recycled or Dual Recycled.

The interest of this configuration is that we can tune the shape of the sensitivity
by changing the length of the Signal Recycling Cavity. In particular, there is a con-
figuration called detuned that maximizes the sensitivity in the range of interest for
BNS.

3.2.3 Limiting Noises

So far we have only considered the shot noise which can not be mitigated. At low fre-
quency though there are other noises that couple to the interferometer and that affect
the sensitivity. Figure 3.5 shows an example of a sensitivity curve of Advanced Virgo
with the contributions of the fundamental noises that typically limit the sensitivity.

The example shown in Fig. 3.5 corresponds to the Advanced Virgo detector on its
Dual Recycled configuration with 125 W of input power tuned for Binaries Neutron
Stars. Even if it is not the current configuration, it is representative of the impact of
the different noises to the sensitivity.

At high frequencies it can be seen that theQuantumnoise dominates the sensitivity,
in particular, the shot noise, as we had anticipated. At low frequencies though, there
are different contributions. Here we will mention the most relevant [7]:

• Quantum noise: As mentioned before it comprises the shot noise (dominant at
high frequencies) and the radiation pressure (dominant at low frequencies). The
latter is the consequence of the force that the photons exert on the test masses,
causing a displacement of the mirrors.
This effect is more important when the power increases since the force is larger
as well. Its behaviour depends on the frequency as 1/ f 2, which is the reason why
it is more important at low frequencies. The impact can be reduced, in particular
by increasing the mass of the mirrors, as it was done for Advanced Virgo, where
their mass is 42 kg.

Scheme of a Michelson 
interferometer with Fabry 
Perot cavities on its arms, a 
power recycling mirror and 
a signal recycling mirror 

Scheme of a Michelson 
interferometer with 
Fabry Perot cavities on 
its arms and a power 
recycling mirror 

Scheme of a Michelson 
interferometer with 
Fabry-Perot cavities on 
its arms 

The complete scheme includes a signal recycling cavity as well



'&

Advanced Virgo

VW - PO5, Nov 9th, 2022 G Losurdo - INFN Pisa 2

2009 2011

Target input power: 125 W

J#$*$%(.%&7,#%&-*$%"-%"#$%,7**$)"%'0G'),$0%()"$*+$*-&$"$*.8%27"%()%"#(.%()"*-07,"-*3%,-7*.$%H$%."-1%#$*$:%
T+%3-7%H(.#%"-%5)-H%&-*$8%'%I--0%*$+$*$),$%(.%"#$%172/(.#$0%<#P%"#$.(.%-+%;7/('%Q'.')7$G' P('L%!/()5@:

90G'),$0%S(*I-

PhD%20thesis%20of%20Julia%20Casanueva%20Diaz
https://tel.archives-ouvertes.fr/tel-01625376/document


88



89

Differential equation satisfied by the generating function of the Bessel functions 

Starting from

after multiplying throughout times tn and summing over n, we see at once that this is leads to

and the sum can be rearranged as follows

and this concludes the proof.   

x2 ∂
2 Jn
∂x2

+ x ∂Jn
∂x

+ x2 − n2( )Jn = 0
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