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ti

1.1 Lezione #1

1.1.1 Telegrapher’s Equations

Some definitions first:

ϵ0 = vacuum permittivity = 8.8544× 10−12 F/m

µ0 = vacuum permeability = 1.5266× 10−6 H/m

1 F (Farad) =
s4A2

kg m2
; 1 H (Henry) =

m2kg

A2s2

c =
1

√
ϵ0µ0

∼ 3.0× 108 m/s

Transmission_line_element.svg.png (PNG Image, 1280 × 657 pixels) - Scaled (91%) https://upload.wikimedia.org/wikipedia/commons/thumb/1/11/Transmission_line_element.svg/...

-------x--

Figura 1: two parallel wires

Let’s now assume we have two in-
finite length wires running parallel
to each other as in fig. 1, (courtesy
of Wikipedia) and for simplicity we
consider the system uni-dimensional
(along x). Let us indicate R, C, G
and L, the resistance (Ohm), capa-
citance (Faraday), conductance (Sie-
mens) and inductance (Henry), re-
spectively, and we assume that these

values are kept constant along the wire. From Electromagnetism they are
defined as:

R =
V (x, t)

I(x, t)
; C =

Q(x, t)

V (x, t)

G =
I(x, t)

V (x, t)
; L =

ΦB(x, t)

I(x, t)
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where V (x, t), I(x, t), Q(x, t) and ΦB(x, t) are the Voltage, Current, Charge
and Magnetic Flux, respectively, and we know the relations between them:

V (x, t) =
∂ΦB(x, t)

∂t
= L

∂I(x, t)

∂t

I(x, t) =
∂Q(x, t)

∂t
= C

∂V (x, t)

∂t

where, as said before, we have assumed that these quantities are only function
of x (uni-dimensional) and t. Let ∆x be the distance between two points
along the wire where we measure V and I. Also let us substitute R, G, C
and L by the same quantities per unit length. Then the voltage drop will be
given by two quantities:

∆V (x, t) = −R∆xI(x, t)− L∆x
∂I(x, t)

∂t
(1)

due to R and L along the wire (series) and, similarly, the Current drop after
the same distance:

∆I(x, t) = −G∆xV (x, t)− C∆x
∂V (x, t)

∂t
(2)

due to the C and G between the wires (parallel). The negative signs are due
to the fact that V and I decrease while moving along the positive x axis
If we now divide both equations 1 and 2 by ∆x and take the limit ∆x →
0 (and removing “(x, t)” for simplicity) we obtain the two Telegrapher’s
equations 

∂V

∂x
= −RI − L

∂I

∂t
∂I

∂x
= −GV − C

∂V

∂t

We now derive the first equation w.r.t. x and the second equation w.r.t. t
and obtain 

∂2V

∂x2
= −R

∂I

∂x
− L

∂2I

∂t∂x
∂2I

∂x∂t
= −G

∂V

∂t
− C

∂2V

∂t2

then substitute ∂2I/∂x∂t in the first equation and combine the two equations
into a single one

∂2V

∂x2
= LC

∂2V

∂t2
+ (GL+RC)

∂V

∂t
+RGV (3)

We can find a similar equation with Current in place of Voltage:

∂2I

∂x2
= LC

∂2I

∂t2
+ (GL+RC)

∂I

∂t
+RGI

Lossless transmission line
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The ideal situation is that in which R = 0 (the wires have no resistance:
perfect conductors) and G = 0 (no conductance between the wires: perfect
insulation), then eq 3 becomes

∂2V

∂x2
= LC

∂2V

∂t2
(4)

This is the famous wave equation already seen long time ago (first year
university: mechanical waves...) and we already know that the solution of
this equation are two waves moving in the opposite directions

V (x, t) = V1e
i(ωt−kx) + V2e

i(ωt+kx)

with the velocity of propagation of the signal given by

v =
ω

k
=

1√
LC

Coaxial cables

Figura 2: Coaxial cable RG-59

A flexible coaxial cable, such as
the one depicted in fig. 2 (courte-
sy of Wikipedia) is composed of four
coaxial elements

1. outer plastic sheath

2. woven copper shield

3. inner dielectric insulator

4. copper core

therefore a coaxial cable is like two
parallel wires, separated by an in-
sulator. From electromagnetism we
know that

C = 2πϵ

(
ln

b

a

)−1

∼ 55.6ϵr

(
ln

b

a

)−1

[pF/m]

and

L =
µ

2π
ln

b

a
∼ 0.2µr ln

b

a
[µH/m]

where a e b are the diameters of the copper core and the copper shield,
respectively, and

ϵr =
ϵ

ϵ0
and µr =

µ

µ0

with ϵr the relative permittivity and µr the relative permeability of the die-
lectric insulator. From the above information, we can find the speed of the
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wave inside a coaxial cable, and it depends only on the characteristic of the
inner dielectric insulator

LC = ϵµ → v =
1√
LC

=
1

√
ϵµ

=
1

√
ϵrϵ0µrµ0

=
c

√
ϵrµr

From the general telegraph’s equations we can find the solutions of the
equations, that is V (x, t) and I(x, t) and from that, we can evaluate the
impedance of the cable which is

Z =
V

I
=

√
R + iωL

G+ iωC

and in the lossless case it becomes

Z =

√
L

C
=

√
µ

4π2ϵ
ln

b

a
∼ 60 ln

b

a

√
µr

ϵr
Ω (Ohm)

Therefore the impedance of the coaxial cable depends on the dielectric
insulator and on the ratio of the diameters of the copper shield and core.

Real case transmission line

A true coaxial cable is not an ideal lossless cable and therefore we must
take into account the fact that the telegraph’s equation cannot be simplified
to equation 4. We must therefore find a solution to equation 3. Let us assume
that we have a signal of the form V (x, t) = V (x)eiωt. Substituting into eq. 3
one finds

∂2V

∂x2
= (R + iωL)(G+ iωC)V = γ2V

with
γ = α + ik = [(R + iωL)(G+ iωC)]1/2

The equation still has a solution of the kind seen before (two waves moving
in opposite directions), but this time with an attenuation term in it

V (x, t) = V1e
−αxei(ωt−kx) + V2e

αxei(ωt+kx)

The solution is more complicated than this, since α = α(ω) and therefore
the attenuation is not the same at all frequencies. A good approximation is

α ∼ 1

2

(
R

√
C

L
+G

√
L

C

)

but it is seen that it varies even tenfold at high frequencies. The behavior of
R, C, G, and L in function of the frequency and their approximate values at
1 MHz (in parenthesis) are:

• R ∝
√
ω (500 Ω/km)

• C is practically constant over the whole frequency range (52 nF/km)
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• G ∝ ω (30 µ S/km)

• L reduces very little with increasing frequency, some 20% from 10 kHz
to 5 MHz (0.5 mH/km)

The attenuation is defined in dB/m.

Some numbers

We use two tipe of cables in our experimental laboratory

Cable a b b/a β ωr ϵr Z α
(mm) (mm) (Ω) (dB/m)

RG-58C/U (BNC) 2.95 5.00 1.70 0.66 1 2.3 50 0.1
RG-174/U (Lemo) 1.50 2.55 1.70 0.66 1 2.3 50 0.2

Therefore the speed of the signal is approximately 2/3 of the speed of light.
That is why the length of the cables is measured in ns and not in cm. Given
the amplitude of a generated signal, its attenuation becomes relevant after
a certain distance of the cable. The attenuation given in the table is a
rough approximation, because it depends on the frequency, for instance for
an RG-58C/U cable the attenuation is α = 0.06 and 0.17 at 10 and 100 MHz,
respectively.
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