Virtual Instrumentation With LabVIEW
Course Goals

• Understand the components of a Virtual Instrument
• Introduce LabVIEW and common LabVIEW functions
• Build a simple data acquisition application
• Create a subroutine in LabVIEW
• Work with Arrays, Clusters, and Structures
• Learn About Printing & Documentation Features
• Develop in Basic Programming Architectures
• Publish VIs on the Web
Section I

- LabVIEW terms
- Components of a LabVIEW application
- LabVIEW programming tools
- Creating an application in LabVIEW
LabVIEW Programs Are Called Virtual Instruments (VIs)

Front Panel
- Controls = Inputs
- Indicators = Outputs

Block Diagram
- Accompanying “program” for front panel
- Components “wired” together
VI Block Diagram

Block Diagram Toolbar

SubVI

While Loop Structure

Numeric Constant

Timing Function

Boolean Control Terminal

Divide Function

Graph Terminal

Wire Data

ni.com
Express VIs, VIs and Functions

- **Express VIs**: interactive VIs with configurable dialog page
- **Standard VIs**: modularized VIs customized by wiring
- **Functions**: fundamental operating elements of LabVIEW; no front panel or block diagram
Controls and Functions Palettes

Controls Palette
(Front Panel Window)

Functions Palette
(Block Diagram Window)
Tools Palette

- Floating Palette
- Used to operate and modify front panel and block diagram objects.

- Operating Tool
- Positioning/Resizing Tool
- Labeling Tool
- Wiring Tool
- Shortcut Menu Tool
- Scrolling Tool
- Automatic Selection Tool
- Breakpoint Tool
- Probe Tool
- Color Copy Tool
- Coloring Tool
Status Toolbar

- Run Button
- Continuous Run Button
- Abort Execution
- Pause/Continue Button
- Text Settings
 - Align Objects
 - Distribute Objects
 - Reorder
 - Resize front panel objects

Additional Buttons on the Diagram Toolbar

- Execution Highlighting Button
- Step Into Button
- Step Over Button
- Step Out Button
Do Not Delete This Slide
Open and Run a Virtual Instrument

Example finder

NI Example Finder

Browse | Search | Submit

Enter keyword(s):
- signals

Double-click keyword(s):
- accelerometer
- access
- acquisition
- actions
- active
- ActiveX
- agriculture
- alarms
- algebra
- algorithms
- animation

Search for:
- any of the words

Include ni.com examples

Hardware
- No hardware found

17 Examples match your search criteria

- 2D FFT of a Pulse.vi
- Advanced Peak Detector.vi
- Advanced Threshold Peak Detector.vi
- Arbitrary Wave Display.vi
- Bandlimited Signal Generation.vi
- DC Centered Spectrum.vi
- Echo Detector.vi
- Function Generator with FM.vi
- Multitone with Amplitudes.vi
- Parseval's Theorem.vi
- Peak Detection and Display.vi
- Signal Generation and Processing.vi
- Vibration Analysis.vi
- Waveform Generation Using Formula.vi
- Dynamic Signal Analyzer.vi
- Detect Signals.vi
- Route Intervals to Signal Queue.vi

Description
Determines the result of filtering and windowing a generated signal. The example also displays the power spectrum for the generated signal.

Notes: You must have the LabVIEW Full or Professional Development Systems to run this example.

All hardware compatible with selected example. Double-click a device to view Web information.
Creating a VI

Front Panel Window

Block Diagram Window

Control Terminals

Indicator Terminals
Creating a VI – Block Diagram
Wiring Tips – Block Diagram

Wiring “Hot Spot”

Use Automatic Wire Routing

Click To Select Wires

single-click
double-click
triple-click

Clean Up Wiring

Clean Up Wire
Create Wire Branch
Delete Wire Branch
Insert
Do Not Delete This Slide
Dataflow Programming

- Block diagram executes dependent on the flow of data; block diagram does NOT execute left to right

- Node executes when data is available to ALL input terminals

- Nodes supply data to all output terminals when done
Help Options

Context Help
- Online help
- Lock help
- Simple/Complex Diagram help
- Ctrl + H

Online reference
- All menus online
- Pop up on functions in diagram to access online info directly
Do Not Delete This Slide
Exercise 1 - Convert °C to °F

This VI converts a Celsius temperature to Fahrenheit.

Deg C Deg F
0.00 0.00
Debugging Techniques

• Finding Errors
 Click on broken Run button
 Window showing error appears

• Execution Highlighting
 Click on Execution Highlighting button; data flow is animated using bubbles. Values are displayed on wires.

• Probe
 Right-click on wire to display probe and it shows data as it flows through wire segment
 You can also select Probe tool from Tools palette and click on wire
Section II – SubVIs

• What is a subVI?
• Making an icon and connector for a subVI
• Using a VI as a subVI
Block Diagram Nodes

- Function Generator VI
- Same VI, viewed three different ways
- Yellow field designates a standard VI
- Blue field designates an Express VI
SubVIs

• A SubVI is a VI that can be used within another VI
• Similar to a subroutine
• Advantages
 – Modular
 – Easier to debug
 – Don’t have to recreate code
 – Require less memory
Icon and Connector

- An icon represents a VI in other block diagrams
- A connector shows available terminals for data transfer
SubVIs

Sub VIs
Steps to Create a SubVI

- Create the Icon
- Create the Connector
- Assign Terminals
- Save the VI
- Insert the VI into a Top Level VI
Create the Icon

- Right-click on the icon in the block diagram or front panel
Create the Connector

Right click on the icon pane (front panel only)
Assign Terminals
Save The VI

• Choose an Easy to Remember Location

• Organize by Functionality
 – Save Similar VIs into one directory (e.g. Math Utilities)

• Organize by Application
 – Save all VIs Used for a Specific Application into one directory or library file (e.g. Lab 1 – Frequency Response)
 • Library Files (.llbs) combine many VI’s into a single file, ideal for transferring entire applications across computers
Insert the SubVI into a Top Level VI

Accessing user-made subVIs
Functions >> All Functions >> Select a VI
Or
Drag icon onto target diagram
Tips for Working in LabVIEW

• Keystroke Shortcuts
 – <Ctrl-H> – Activate/Deactivate Context Help Window
 – <Ctrl-B> – Remove Broken Wires From Block Diagram
 – <Ctrl-E> – Toggle Between Front Panel and Block Diagram
 – <Ctrl-Z> – Undo (Also in Edit Menu)

• Tools » Options… – Set Preferences in LabVIEW

• VI Properties – Configure VI Appearance, Documentation, etc.
Section III – Data Acquisition

- Data acquisition (DAQ) basics
- Connecting Signals
- Simple DAQ application

Diagram:
- Sensors
- Terminal Block
- Cable
- DAQ Device
- Computer
Data Acquisition in LabVIEW

Traditional NI-DAQ
Specific VIs for performing:
• Analog Input
• Analog Output
• Digital I/O
• Counter operations

NI-DAQmx
Next generation driver:
• VIs for performing a task
• One set of VIs for all measurement types
DAQ – Data Acquisition

Temperature Acquisition using the DAQ Assistant
Data Acquisition Terminology

- **Resolution** - Determines How Many Different Voltage Changes Can Be Measured
 - Larger Resolution \Rightarrow More Precise Representation of Signal

- **Range** - Minimum and Maximum Voltages
 - Smaller range \Rightarrow More Precise Representation of Signal

- **Gain** - Amplifies or Attenuates Signal for Best Fit in Range
Do Not Delete This Slide
Hardware Connections

BNC-2120

SC-2075

NI-ELVIS

SCB-68
Exercise 2 – Simple Data Acquisition

Complete Convert C to F.vi, then create Thermometer.vi.
Do Not Delete This Slide
Section IV – Loops and Charts

- For Loop
- While Loop
- Charts
- Multiplots
Loops

• While Loops
 – Have Iteration Terminal
 – Always Run at least Once
 – Run According to Conditional Terminal

• For Loops
 – Have Iteration Terminal
 – Run According to input N of Count Terminal
Loops (cont.)

1. Select the loop

2. Enclose code to be repeated

3. Drop or drag additional nodes and then wire
Charts

Waveform chart – special numeric indicator that can display a history of values

Controls >> Graph Indicators >> Waveform Chart
Wiring Data into Charts

Single Plot Charts

Multiplot Charts
Exercise 3 – Using loops

Students build Use a loop.vi.
Section V – Arrays & File I/O

- Build arrays manually
- Have LabVIEW build arrays automatically
- Write to a spreadsheet file
- Read from a spreadsheet file
Adding an Array to the Front Panel

From the Controls >> All Controls >> Array and Cluster subpalette, select the Array Shell.

Drop it on the screen.
Adding an Array (cont.)

Place data object into shell (i.e. Numeric Control)
Creating an Array with a Loop

- Loops accumulate arrays at their boundaries
Creating 2D Arrays
File I/O

File I/O – passing data to and from files
- Files can be binary, text, or spreadsheet
- Write/Read LabVIEW Measurements file (*.lvm)

Writing to LVM file Reading from LVM file

- Simulate Signal: Sine
- Write LabVIEW Measurement File: Signals
- Read LabVIEW Measurement File: Signals
- Waveform Graph

ni.com
Write LabVIEW Measurement File

- Includes the open, write, close and error handling functions
- Handles formatting the string with either a tab or comma delimiter
- Merge Signals function is used to combine data into the dynamic data type
Exercise 4 – Analyzing and Logging Data

Students build Temperature Logger.vi
Section VI – Array Functions & Graphs

• Basic Array Functions
• Use graphs
• Create multiplots with graphs
Array Functions – Basics

Functions >> All functions >> Array
Array Functions – Build Array
Graphs

• Selected from the Graph palette of Controls menu
 Controls>>All Controls>>Graphs

 Waveform Graph – Plot an array of numbers against their indices
 Express XY Graph – Plot one array against another
 Digital Waveform Graph – Plot bits from binary data
Do Not Delete This Slide
Graphs

Right-Click on the Graph and choose Properties to Interactively Customize
Exercise 5 – Using Waveform Graphs
Section VII – Strings, Clusters, & Error Handling

- Strings
- Creating Clusters
- Cluster Functions
- Error I/O
Strings

• A string is a sequence of displayable or nondisplayable characters (ASCII)
• Many uses – displaying messages, instrument control, file I/O
• String control/indicator is in the Controls » Text Control or Text Indicator
Clusters

• Data structure that groups data together
• Data may be of different types
• Analogous to `struct` in C
• Elements must be either all controls or all indicators
• Thought of as wires bundled into a cable
Creating a Cluster

1. Select a Cluster shell
2. Place objects inside the shell

Controls >> All Controls >> Array & Cluster
Cluster Functions

- In the **Cluster** subpalette of the **Functions>>All functions** palette
- Can also be accessed by right-clicking on the cluster terminal

Bundle

- (Terminal labels reflect data type)
- **Bundle By Name**

[Image of diagram showing cluster functions and their usage]
Cluster Functions

Unbundle

Unbundle By Name

Unbundled cluster in the diagram
Error Clusters

- Error cluster contains the following information:
 - **Boolean** to report whether error occurred
 - **Integer** to report a specific error code
 - **String** to give information about the error
Error Handling Techniques

• Error information is passed from one subVI to the next
• If an error occurs in one subVI, all subsequent subVIs are not executed in the usual manner
• Error Clusters contain all error conditions
• Automatic Error Handling
Section VIII - Case & Sequence Structures, Formula Nodes
Case Structures

• In the Structures subpalette of Functions palette
• Enclose nodes or drag them inside the structure
• Stacked like a deck of cards, only one case visible

Functions >> Execution control
Exercise 6 – Error Clusters & Handling
Sequence Structures

• In the **Execution Control** subpalette of Functions palette
• Executes diagrams sequentially
• Right-click to add new frame
Formula Nodes

- In the Structures subpalette
- Implement complicated equations
- Variables created at border
- Variable names are case sensitive
- Each statement must terminate with a semicolon (;)
- Context Help Window shows available functions
Section IX – Printing & Documentation

• Print From File Menu to Printer, HTML, Rich Text File
• Programmatically Print Graphs or Front Panel Images
• Document VIs in VI Properties » Documentation Dialog
• Add Comments Using Free Labels on Front Panel & Block Diagram
Printing

• **File » Print**… Gives Many Printing Options
 – Choose to Print Icon, Front Panel, Block Diagram, VI Hierarchy, Included SubVIs, VI History

• Print Panel.vi (Programmatically Prints a Front Panel)
 – **Functions » All Functions » Application Control**

• Generate & Print Reports (**Functions » Output » Report**)
Documenting VIs

- **VI Properties » Documentation**
 - Provide a Description and Help Information for a VI

- **VI Properties » Revision History**
 - Track Changes Between Versions of a VI

- **Individual Controls » Description and Tip…**
 - Right Click to Provide Description and Tip Strip

- **Use Labeling Tool to Document Front Panels & Block Diagrams**
Section X – Basic Programming Architecture

• Simple VI Architecture
• General VI Architecture
• State Machine Architecture
Simple VI Architecture

• Functional VI that produces results when run
 – No “start” or “stop” options
 – Suitable for lab tests, calculations
• Example: Convert C to F.vi
General VI Architecture

• Three Main Steps
 – Startup
 – Main Application
 – Shutdown
State Machine Architecture

• Advantages
 – Can go from any state from any other
 – Easy to modify and debug

• Disadvantages
 – Can lose events if two occur at the same time

States:
0: Startup
1: Idle
2: Event 1
3: Event 2
4: Shutdown
Exercise 7 – Simple State Machine

This template is for the Standard State Machine design pattern.

Each frame of this case structure executes code for its state and computes what state to transition to next.

States are represented as values of an enumeration. These enumerations are instances of a type definition so that states can be quickly added. To edit the type definition, right-click on an enumeration and select **Open Type Def.**
Do Not Delete This Slide
Section XI – Remote Front Panels

• View & Control LabVIEW Front Panels from a Web Browser
• Requires no programming
• Remote clients see “live” front panel updates
• Multiple clients can view the same panel simultaneously
• Only one client can control the front panel at a time
Remote Panel Web Publishing Tool

• Tools » Web Publishing Tool...

• Click Save to Disk and VI is embedded into an HTML file

• After file is saved, it can be reopened and customized in any HTML editor
Remote Front Panels - Resources

- NI Developer Zone (zone.ni.com)
 - Search for Remote Front Panel
 - Tutorials & Instructions Are Available for Download
 - Information on Incorporating Web Cameras into Remote Panel Applications
Section XII – Additional Topics

• Property Nodes
• Local Variables
• Global Variables
• DataSocket
• Binary File I/O
Where Do I Go From Here?

• Example programs (Help» Find Examples…)
• LabVIEW Student Edition (www.ni.com/labviewse)
• Web resources (ni.com)
 – NI Developer Zone (zone.ni.com)
 – Application Notes
 – Info-labview newsgroup (www.info-labview.org/)
 – Instrument Driver Library (www.ni.com/idnet)