
CBD 8210
CAMAC Branch Driver

User's Manual, version 2.0
Designation: DOC 8210/UM
PN: 085.180

Version 2.0 - July 1996

CREATIVE ELECTRONIC SYSTEMS S.A.

Warranty Information

The information in this document has been checked carefully and is thought to be entirely

reliable. However, no responsibility is assumed in case of inaccuracies. Furthermore, CES

reserves the right to change any of the products described herein to improve reliability,

function or design. CES neither assumes any liability arising out of the application or use of

any product or circuit described herein nor conveys any licence under its patent rights or the

rights of others.

WARNING

THIS EQUIPMENT GENERATES, USES AND CAN RADIATE RADIO FREQUENCY

ENERGY AND MAY CAUSE INTERFERENCE TO RADIO COMMUNICATIONS IF NOT

INSTALLED AND USED IN ACCORDANCE WITH THE INSTRUCTION MANUAL. IT HAS

BEEN TESTED AND FOUND TO COMPLY WITH THE LIMITS OF A CLASS A

COMPUTING DEVICE PURSUANT TO SUB-PART J OF PART 15 OF FCC RULES,

WHICH ARE DESIGNED TO PROVIDE REASONABLE PROTECTION AGAINST SUCH

INTERFERENCES WHEN OPERATED IN A COMMERCIAL ENVIRONMENT.

OPERATION OF THIS EQUIPMENT IN A RESIDENTIAL AREA IS LIKELY TO CAUSE

INTERFERENCE; IN WHICH CASE, THE USER AT HIS OWN EXPENSE WILL BE

REQUIRED TO TAKE WHATEVER MEASURES ARE NECESSARY TO CORRECT THE

INTERFERENCE.

© Creative Electronic Systems SA - July 1996 - All Rights reserved

The reproduction of this material, in part or whole, is strictly prohibited. For copy
information, please contact:

Creative Electronic Systems
70, Route du Pont-Butin
P.O. Box 107
CH-1213 PETIT-LANCY 1
SWITZERLAND

The information in this document is subject to change without notice. Creative Electronic
Systems assumes no responsibility for any error that may appear in this document.

CREATIVE ELECTRONIC SYSTEMS i

CONTENTS

1. INTRODUCTION 1

1.1 Overview...1
1.2 Address Mapping..1
1.3 Selection of Internal Registers...2

2. INTERNAL REGISTERS 3

2.1 Control & Status Register - CSR..3
2.2 Interrupt Flag Register - IFR...4
2.3 Interrupt Controller Registers - ICR...4
2.4 Crate Address Register - CAR...4
2.5 BTB Registers - BTB...4
2.6 BZ Generation..4
2.7 GL Register ...5
2.8 Address Modifier...5

3. CAMAC TRANSFERS 7

3.1 Types of Transfer ..7
3.2 Control and Execution of CAMAC Cycles..7
3.3 CAMAC Status Information ..8
3.4 CAMAC Time-Out...8
3.5 24-bit CAMAC Transfers ..8
3.6 GL Cycles ..9

4. INTERRUPTS 11

4.1 General Information...11
4.2 External Interrupts - IT2 and IT4...11
4.3 LAM Handling...12

4.3.1 GL Scanning..12
4.3.2 Information on Interrupt Handling. ..12

ii CREATIVE ELECTRONIC SYSTEMS

5. DMA INTERFACE 13

6. FRONT PANEL 15

6.1 CAMAC Interface..15
6.2 BRANCH Selector Plus Input / Output Sockets..15
6.3 LEDs...16

7. CBD 8210 CHARACTERISTICS 17

8. JUMPER SETTINGS 19

9. ANNEXES 21

9.1 Contact Assignments at Branch Highway Ports ..21
9.2 Jumpers Location..22
9.3 CAMAC Library..22

9.3.1 CAMAC Routines...26
9.3.2 CAMAC Test Program...34

CREATIVE ELECTRONIC SYSTEMS 1

1. INTRODUCTION

1.1 Overview

This Module, type CBD 8210, is a double height VME card allowing a CAMAC Branch
(EUR 4600) to be driven from VME. This means that up to 7 CAMAC crates, on the same
branch highway, can be accessed from VME. The use of PALs and I.C.s in the mechanical
SO format makes it a high performance module. The design of this module has been made
with the intention of allowing it to work in conjunction with a second module enabling DMA
transfers to be made from CAMAC to VME.

The module is an update of the CAMAC Branch Driving VME module developed by the
French Research Institute at SACLAY. The characteristics are the following:

a) Programmable 16-bit or 24-bit transfers.
b) Two external interrupts with handshake.
c) Comprehensive LAM handling.
d) Addition of a DMA module at a later date.
e) Complete monitoring of all transfers displayed on the front panel.
f) Multi-crate addressing possible.

1.2 Address Mapping

The mapping of the CAMAC address field has been taken from the CERN publication
"CERN IMPLEMENTATION RECOMMENDATION for MC 68000 BASED CAMAC PORT
CONTROLLERS". Therefore, for the 24-bit address of VME the following bit allocation
exists:

bits <23...22> 1...0

bits <21...19> Branch address (0 to 7 = 8 branches)

bits <18...16> Crate address 1 - 7 standard addressing.

bits <15...11> N address - CAMAC station number

bits <10...07> A address - CAMAC sub-address

bits <06...02> F code - CAMAC function

bit <01> CAMAC Word length 0 = 24-bit
1 = 16-bit

Thus all the CAMAC system parameters are mapped onto the VME address field.

The CBD 8210 can only drive one CAMAC branch where the number of the branch to be
driven is selected by a front panel switch.

In practice, when a cycle of 24 bits is to be carried out, the master effects a first cycle with
AD01 = 0 (detection of a 24-bit cycle) followed by a cycle with AD01 = 1 allowing the
utilization of the instructions "LWORD" of the MC 68000.

2 CREATIVE ELECTRONIC SYSTEMS

1.3 Selection of Internal Registers

The internal registers are selected by using the command CR0 N29. They are as follows:

CSR CR0 N29 A0 F0 Read / Write

IFR CR0 N29 A0 F4 Write

INT. CONT.1 CR0 N29 A0 F5 Read / Write Control

INT. CONT.1 CR0 N29 A0 F1 Read / Write Data

INT. CONT.2 CR0 N29 A0 F6 Read / Write

INT. CONT.2 CR0 N29 A0 F2 Read / Write

INT. CONT.3 CR0 N29 A0 F7 Read / Write

INT. CONT.3 CR0 N29 A0 F3 Read / Write

CAR CR0 N29 A0 F8 Read / Write

BTB CR0 N29 A0 F9 Read

BZ CR0 N29 A0 F9 Write

GL CR0 N29 A0 F10 Read

CREATIVE ELECTRONIC SYSTEMS 3

2. INTERNAL REGISTERS

2.1 Control & Status Register - CSR

This Read / Write register contains all the information necessary to enable the correct
functioning of the CBD 8210. It is formatted as follows:

D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00

Q X TO BD MNOX SY5 SY4 SY3 SY2 SY1 MTO MLAM MIT2 MIT4 IT2 IT4

INIT = Power-up + SYSRESET

Definition of Bit Allocation:

bit <15> Q Status of Q during the last CAMAC cycle. Read only.

bit <14> X Status of X during the last CAMAC cycle. Read only.

bit <13> TO Time-Out status flag of the last CAMAC cycle. Read only.

bit <12> BD CAMAC branch demand - transparent read of branch highway.
Read only.

bit <11> MNOX no X mask. Allows masking of the BERR when the CAMAC
cycle with X = 0.

MNOX = 1 NOX gives DTACK
MNOX = 0 NOX gives BERR
Read / Write INIT = 1

bits <10...06> SY5..SY1 Identification SY1 and SY2 monitored on the front panel.

Read / Write INIT = 0

bit <05> MTO Time-Out mask. Allows removal of internal Time-Out.

MTO = 1 No Time-Out on board.
MTO = 0 Time-Out active.
Read / Write INIT = 1

bit <04> MLAM Interrupt mask for level 3 VME of the control of GLAM. It
suppresses also the automatic scanning of BG on BD = 1.

Read / Write INIT = 1

bits <03...02> MIT2,4 Mask for the external interrupts.

Read / Write INIT = 1

bits <01...00> IT2,4 External interrupt flags give O/P on ACK Lemos.

Read only INIT = 0

The bits <00...01> - IT2, IT4 - are read only in the CSR register
in order to prevent the erasure of interrupts.

4 CREATIVE ELECTRONIC SYSTEMS

2.2 Interrupt Flag Register - IFR

This register is write only and allows to set or reset the external interrupts by software. See
chapter on external interrupts.

D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00

- - - - - - - - - - - - - - IT2 IT1

2.3 Interrupt Controller Registers - ICR

These registers correspond to the internal registers of the AMD 9519. Each interrupt controller
consists of two registers - one for DATA and one for CONTROL.

For a more detailed explanation see the section on LAM handling and the data sheet on the
9519A.

2.4 Crate Address Register - CAR

This register is used for multiple addressing of the crates on the CAMAC branch and allows
selection of the crates required for this action.

D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00

Do not care CR7 CR6 CR5 CR4 CR3 CR2 CR1 -

INIT = ?

Read / Write.

Note The CAR must not be READ when GL Scanning is ACTIVE.

2.5 BTB Registers - BTB

This register contains all the information regarding which crates in the branch are ON LINE.
In addition, it removes the ambiguity of Time-Out.

This register is also used to generate the BG cycles and is "Read only".

D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00

Do not care BTB7 BTB6 BTB5 BTB4 BTB3 BTB2 BTB1 0

2.6 BZ Generation

The generation of BZ (reset CAMAC branch) is done by a write cycle to the address of the
BTB register. The signal BZ is active for a period of approximately 15 µs.

BZ can also be generated by the front panel push button.

CREATIVE ELECTRONIC SYSTEMS 5

2.7 GL Register

In order to facilitate the use of this module the possibility to carry out BG cycles under
program control has been included. During a read of this register the CBD 8210 carries out a
standard CAMAC branch cycle using the BTB register to select the ON LINE crates. The
logic of the 24-bit word is identical to the read CAMAC cycles.

D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00

GL16 GL15 GL14 GL13 GL12 GL11 GL10 GL09 GL08 GL07 GL06 GL05 GL04 GL03 GL02 GL01

T=1

D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00

0 0 0 0 0 0 0 0 GL24 GL23 GL22 GL21 GL20 GL19 GL18 GL17

T=0

2.8 Address Modifier

Decoding of the address modifier is carried out by means of a PROM 24S10 and is therefore
user programmable. (See explanatory note).

To reprogram the address modifier decoder:

A0 = AM0

A1 = AM1

A2 = AM2

A3 = AM3

A4 = AM4

A5 = AM5

A6 = 0

A7 = 0

Qo = AMOK

Standard VME AM decoded : 3D, 39.

CREATIVE ELECTRONIC SYSTEMS 7

3. CAMAC TRANSFERS

3.1 Types of Transfer

The three types of transfer are separated inside the card. They are as follows:

READ function F0 to F7

WRITE function F16 to F23

COMMAND functions F8 to F15 & F24 to F31

READ functions are executed by MOV (CAMAC), (EA) cycle VME.

WRITE functions are executed by MOV (EA), (CAMAC) cycle VME.

COMMAND functions are executed by MOV (CAMAC), (EA) cycle VME

TST (CAMAC) cycle VME

For COMMAND functions the value of the CSR is transmitted during a Read cycle.

For an incorrect CAMAC cycle, e.g. VME Write with F0 A0, the CBD 8210 completes the
cycle with DTACK but the CAMAC cycle is not executed.

3.2 Control and Execution of CAMAC Cycles

When a correct CAMAC cycle (Read / Write) is sent from VME, the decoding logic sends a
CAMAC REQUEST to the CAMAC sequencer. From this moment the sequencer starts to get
access to the branch by:

❶ Generating BCR, BN, BF, (DATA) BA

❷ Generating BTA.

❸ Waiting until all the crates addressed generate their BTBs.

❹ Confirming that VME cycle can complete.

❺ Completing the CAMAC cycle.

The CBD 8210 finishes the VME handshake at the moment when all the BTBs are in a "1"
state (called S1 in the CBD 8210). The logic of the beginning and the end of the cycle is
included for multi-crate addressing.

The DATA are separated for Read and Write to eliminate overlap and not to stretch the
length of the VME bus cycles.

In addition, the PAL-sequencer, controlling the CAMAC branch cycle, is protected against
corruption in the event of a new branch cycle being requested before the end of the current
cycle.

Multi-addressing is executed with the crate address code CR0. In such a case the crates
addressed are those currently stored in the CAR.

For 16-bit CAMAC transfers (both Read and Write) the data are transmitted in a pseudo-
transparent manner. The variables CR, N, F, A are stored at the start of each CAMAC cycle.

8 CREATIVE ELECTRONIC SYSTEMS

3.3 CAMAC Status Information

The CAMAC status bits Q, X and TO are updated during each CAMAC cycle. At the
beginning of each cycle, the internal memory for these bits is reset. The values of Q and X
are memorized at the moment of the internal S1 (all BTBs at 1). The generation of BERR
due to the absence of X depends on the mask MNOX (MNOX = 1 cause no BERR if X = 0).
In all other cases the CBD 8210 replies with DTACK.

3.4 CAMAC Time-Out

For each CAMAC cycle a Time-Out circuit is triggered IF the mask MTO=0. In the event
that the circuit timing is out before completion of the current CAMAC cycle the VME
handshake is completed with BERR and the CAMAC branch cycle is aborted with the TO
flip flop being set. The duration of the Time-Out circuit can be selected by jumpers. The
value selected can be between 2 µs and 134 s. See section on jumper settings.

3.5 24-bit CAMAC Transfers

24-bit CAMAC transfers are treated in the same way as with 32-bit 68000 transfers. Also,
from the software point of view, 24-bit transfers are pseudo-transparent. From a hardware
point of view, LWORD is realized in two steps:

❶ Cycle with AD01 = 0 high word

❷ Cycle with AD01 = 1 low word

Thus, for 24-bit Read and Write CAMAC cycles each type of transfer is carried out in a
different way:

24-bit Read: T=0 Branch cycle with transparent read of bits <16...23>.

T=1 Read bits <00...15> from the temporary register.

24-bit Write: T=0 Store bits <16...23> in the temporary register.

T=1 Branch cycle with transparent write of bits <00...15> plus
bits <16...24> from the temporary register.

For COMMAND functions the CBD 8210 only accepts these under the condition T = 1.

Note On 24-bit Read the bits <24...31> are set to 0.

CREATIVE ELECTRONIC SYSTEMS 9

3.6 GL Cycles

Two types of GL cycles exist in the CBD 8210:

❶ Automatic scan for interrupt level 3.

❷ Programmed cycle.

Automatic scan cycles are discussed in the section on interrupts.

Programmed cycles are similar to a CAMAC read. For this cycle, the crate addresses are
those crates given by the BTB register.

e.g. MOVE.W(GL), (EA)

The 24-bit transfer (LWORD) is treated in the same way as a 24-bit CAMAC Read

e.g. MOVE.L(GL), (EA)

CREATIVE ELECTRONIC SYSTEMS 11

4. INTERRUPTS

4.1 General Information

The CBD 8210 contains an interrupt structure at several levels as follows:

• Two external interrupts on levels 2 and 4.

• One internal interrupt for LAM handling on level 3.

Each source of interrupt can be masked separately. The interrupt vector for levels 2 and 4 can
be selected by jumpers and for level 3 by software. The interrupt logic corresponds to the
VME standard revision B with a transit-time of the daisy chain of 40 ns.

Initialization sets the interrupt masks to "1" and the interrupt flags are cleared.

4.2 External Interrupts - IT2 and IT4

External interrupts (activated on the negative edge) can be selected for action by either NIM
or TTL I/Ps. In addition, there is an ACK O/P allowing a handshake action with the source.

The timing diagram is as follows:

50 ns max.

Ext. Source

ACK IACK or Int. FF clear
IACK VME

This method of operation enables external synchronization with the whole interrupt process.

The interrupt flip flop can be SET, RESET and Read by the master, allowing the use of
individual masks, as follows:

❶ To use the external interrupt inputs for polling.

❷ To use the ACK output for external synchronization.

❸ To generate interrupts by software.

The vector associated with each external interrupt can be selected by jumper (8 bits) - see
the section on jumper settings for vector and NIM/TTL selection.

The use of the Input / Output sockets INT and ACK allows the connection of a second
CBD 8210 on the same branch with a system of handshaking.

12 CREATIVE ELECTRONIC SYSTEMS

4.3 LAM Handling

LAM handling is carried out by three interrupt controllers of type AMD 9519. This choice
allows sophisticated GLAM handling with a minimum of hardware. The AMD 9519 is a
complicated device, and it is recommended to study carefully the manufacturers data sheet.

The 24 GLAMs are connected to the three AMD 9519s, as follows:

GL1 to GL8 INT. CONTR. 1

GL9 to GL16 INT. CONTR. 2

GL17 to GL24 INT. CONTR. 3
(GL1 has the highest priority)

For correct GLAM handling it is important to use the interrupt controllers, as follows:

Number of BYTE 1
Interrupt input negative edge
GINT polarity negative

4.3.1 GL Scanning

In order to simplify the use of the module the generation of GL cycles is done autonomously
and is interleaved with CAMAC cycles. The repetition rate of GL cycles has been set to
10 µs.

The generation of BG cycles is done only if the mask MLAM = 0 and the signal BD is
active.

4.3.2 Information on Interrupt Handling.

The three interrupt controllers are connected in series and the priority of the 24 sources of
interrupts can be defined by three separate groups. However, group 1 has always a higher
priority than group 2 which has a higher one than group 3. The vectors must be programmed
before use. It is also possible to carry out interrupt polling by using the internal masks of the
AMD 9519s.

It should be noted that in order not to block the action of a higher priority GL, the handling of
IRQ3 VME should not stop the generation of BG cycles. Thus it is part of the requirements of
the user program that it resets the AMD 9519 interrupt, which has just been handled, to zero.

CREATIVE ELECTRONIC SYSTEMS 13

5. DMA INTERFACE
From the beginning, the design of the CBD 8210 CES has been made with the intention of
being able to connect a DMA controller having access to the CAMAC branch. Furthermore,
side A of connector P2 has been made in order to allow the variables C, N, A and F to be fed
into the module and to allow the status bits X, Q and ENDCYCLE to be sent to the DMA
controller.

In addition, it is also possible to do in a single VME cycle (for example) a Read in a
CAMAC module and Write into a VME memory module. The data are transmitted directly
onto the VME bus.

CREATIVE ELECTRONIC SYSTEMS 15

6. FRONT PANEL
The front panel gives complete information on the type of cycles being executed. The panel
is divided into three parts, as follows:

❶ Connection to the CAMAC branch.

❷ Input / Output and branch Z.

❸ LED indicators.

6.1 CAMAC Interface

This connector is the standard CAMAC BRANCH HIGHWAY connector manufactured by
EMIHUGHES. It is fairly delicate and should be treated with care when connecting and
disconnecting the branch highway cable. See appendix for signal layout.

6.2 BRANCH Selector Plus Input / Output Sockets

The branch selector switch, on the front panel, allows the CBD 8210 to be encoded onto the
required section of the VME address field. The selector operates between 0 and 7.

External interrupts IT2 and IT4 are LEMO connectors type 00 with Vin Max = +12 V and Vin
Min = -12V.

Interrupt ACK BS2 and BS4 are also LEMO type 00 and can be selected to be either:

NIM - 16 mA. to 0 mA.

or

TTL 0.5 V. to 2.7 V.

Branch ACK BRCTL output LEMO type 00

TTL Imax = 120 mA.

This output provides a pulse each time the CBD 8210 has access to the CAMAC branch,
under program control. The duration of the pulse corresponds to the branch cycle time.

Push button BZ generates a branch initialize (BZ) with a duration of approximately 15 µs.

16 CREATIVE ELECTRONIC SYSTEMS

6.3 LEDs

The information given by the front panel LEDs is as follows:

• TB1 to TB7 Current "on line" crates. Corresponds to BTBx = 0

• BCR1 to BCR7 Status of the last CAMAC cycle.

• BN1 to BN16 Status of the last CAMAC cycle.

• BF1 to BF16 Status of the last CAMAC cycle.

• BA1 to BA8 Status of the last CAMAC cycle.

• X Status received during last CAMAC cycle.

• Q Status received during last CAMAC cycle.

• SY1 SY2 Read / Write bits in the CSR.

• TA BTA of the CAMAC command stretched to 0.3 S.

• BG BG of the command stretched as for BTA.

• BD Transparent state of the branch demand signal.

• TO Flag bit in the CSR if "Time-Out" during last CAMAC cycle.

• MTO Time-Out mask in the CSR.

• MLAM LAM mask bit in the CSR.

CREATIVE ELECTRONIC SYSTEMS 17

7. CBD 8210 CHARACTERISTICS
Cycle min. with branch = 1 M 1.5 µs.

Cycle max. with branch = 15 M 2.5 µs.

Cycle time for internal register = 500 ns.

VME CAMAC BRANCH DRIVER

D16 A24

I(3), I(2), I(4)

Operating conditions 0 to 70 degrees C.
0 to 95% humidity

Supplies +5 V. at 3.5 A (static)
-12 V. at 0.1 A

Card compatible with VME rev. B.

CREATIVE ELECTRONIC SYSTEMS 19

8. JUMPER SETTINGS
J1: Vector Number for Interrupt Level 4

1 2 3 4 5 6 70

IN = 1 OUT = 0

In factory set to 252

J2: Vector Number for Interrupt Level 2

1 2 3 4 5 6 70

IN = 1 OUT = 0

In factory set to 125

J3: Time-Out selection - variable between 2 µs and 134 s

B C D EA

IN = L OUT = H

L H H L L = 2 µs.
H H H L L = 4 µs.
L L L H L = 8 µs.
H L L H L = 16 µs.
- - - - -
- - - - -
H H H H H = 134 s.

In factory set to 8 µs.

20 CREATIVE ELECTRONIC SYSTEMS

J4, J5, J6, J7 AND J8: Front panel level select plus ACK

J4:

B A

J5:

B A

J6:

J7:

J8:

Front Panel Interrupt 2 & 4

NIM TTL

J4 A B

J5 A B

J6 IN OUT

J7 OUT IN ACK 2

J8 OUT IN ACK 4

CREATIVE ELECTRONIC SYSTEMS 21

9. ANNEXES

9.1 Contact Assignments at Branch Highway Ports

Signal
Contact

Return
Contact

Signal Signal
Contact

Return
Contact

Signal

32 13 BCR1 93 76 BRW1

33 14 BCR2 94 77 BRW2

34 15 BCR3 95 78 BRW3

35 16 BCR4 Crate Address 96 79 BRW4

67 50 BCR5 97 80 BRW5

68 51 BCR6 98 81 BRW6

69 52 BCR7 99 82 BRW7

36 17 BN1 100 83 BRW8

37 18 BN2 103 84 BRW9

38 19 BN4 Station Address 104 85 BRW10

39 20 BN8 105 86 BRW11

40 21 BN16 106 87 BRW12 Read / Write lines

41 1 BA1 107 88 BRW13

23 2 BA2 Sub Address 108 89 BRW14

24 3 BA4 109 90 BRW15

25 4 BA8 110 91 BRW16

70 53 BF1 112 113 BRW17

71 54 BF2 114 115 BRW18

72 55 BF4 Function Code 116 117 BRW19

73 56 BF8 118 119 BRW20

74 57 BF16 124 125 BRW21

61 44 BQ Response 130 131 BRW24

63 46 BTA 26 5 BV1

31 10 BTB1 27 6 BV2

11 12 BTB2 28 7 BV3

58 22 BTB3 29 8 BV4 Reserved lines

132 92 BTB4 Timing 30 9 BV5

123 102 BTB5 64 47 BV6

120 101 BTB6 65 48 BV7

121 122 BTB7 66 49 Bx Command accepted

60 43 BD Demand 111 75 BSC Cable screen

59 42 BG Graded L Request

62 45 BZ Initialize

22 CREATIVE ELECTRONIC SYSTEMS

9.2 Jumpers Location

P1

07

J1

J2

A E

J3

J4 J5

J6

J8J7

9.3 CAMAC Library

Since all of the trigger and the event builder software of the Crystal Barrel Experiment runs
in VME crates and has been coded in C-language, it became necessary to develop a library
of fast CAMAC functions usable for VME based C-language applications. These functions
have been implemented according to the standard defined by the ESONE committee, and
have been written fully in 68020 assembly language, to gain the maximum CAMAC speed
(All functions have been designed to fit fully on the 68020's cache and make heavy use of
the 68020's bit field instructions).

This note contains a description of CAMAC functions, callable from C-language using the
operating system OS-9 (Version 2.2), together with their calling sequences and the source
code of their implementation (see § 9.3.1).

CREATIVE ELECTRONIC SYSTEMS 23

An example of a benchmark C-language program is given in § 9.3.2., which uses the 68020
CAMAC functions. This program results in 2.4 usecs per CAMAC operation in CSUBR block
mode transfers, what corresponds to the maximum CAMAC speed possible by hardware. Due
to the function calling overhead, single CAMAC operations last 15 µs.

The CAMAC Software uses the CBD 8210 branch driver from CES and has been developed
on a 25 MHz Mini FORCE 21B VME system (no wait states).

Note For all Software applications, the logical parameters should be defined as:
#define FALSE 0
#define TRUE -1

In C-language, it is possible to pass parameters to a function in two ways: Either by
reference (passing the address of an argument, like in FORTRAN) or by value (passing a
copy of the argument's value).

The CCAMAC Software passes all data by reference, what is indicated by the use of the
ampersand in front of corresponding variable name. Vectors of data are always passed by
reference intrinsically!

CCCC (&ext)

CCCC clears the CAMAC crate defined by "ext".

Parameters:
unsigned long ext;

CCCD (&ext~&switch)

CCCD disables the CAMAC branch demand, if "switch" is set to FALSE; CCCD enables the
crate demand, if "switch" is set to TRUE.

Parameters:
unsigned long ext;
unsigned long switch;

CCCI (&ext,&switch)

CCCI clears the CAMAC crate inhibit, if "switch" is set to FALSE; CCCI sets the crate
inhibit, if "switch" is set to TRUE.

Parameters:
unsigned long ext;
unsigned long switch;

CCCZ (&ext)

CCCZ initializes the CAMAC crate defined by "ext".

Parameters:
unsigned long ext;

24 CREATIVE ELECTRONIC SYSTEMS

CDREG (&ext.&branch.&crate.&station.&subaddress)

CDREG combines the branch number, the crate number, the station number and the module
subaddress number into the geographical address and stores the result in "ext".

Parameters:
unsigned long ext;
unsigned long branch;
unsigned long crate;
unsigned long station;
unsigned long subaddress;

CSSA (&function,&ext,&data,&q)

CSSA causes the CAMAC function specified to be executed at the CAMAC address
specified by "ext". This function always makes 16-bit transfers of data. The state of Q
resulting from the operation is stored in "q", TRUE if the operation completed successfully, or
FALSE, respectively.

Parameters:
unsigned long function;
unsigned long ext;
unsigned short data;
unsigned long q;

CSUBR (&function.&ext^!data.cb)

CSUBR causes repeated CAMAC functions to be executed at the CAMAC address specified
by "ext". This function always makes 16-bit block transfers of data. The state of Q resulting
from the operation is stored in "cb[l]", TRUE if the operation completed successfully, or
FALSE, respectively. The number of CAMAC operations to be executed is passed in control
block "Cb[Ol]".

Parameters:
unsigned long function;
unsigned long ext;
unsigned short data[...];
unsigned long cb[2];

CFSA (&function,&ext,&data,&q)

CFSA causes the CAMAC function specified to be executed at the CAMAC address
specified by "ext". This function always makes 24-bit transfers of data. The state of Q resulting
from the operation is stored in "q", TRUE if the operation completed successfully, or FALSE,
respectively.

Parameters:
unsigned long function;
unsigned long ext;
unsigned long data;
unsigned long q;

CREATIVE ELECTRONIC SYSTEMS 25

CTCI (&ext.&inhibit)

CTCI tests the CAMAC crate inhibit, if "inhibit" is set to FALSE, the crate inhibit is off; if
"inhibit" is returned to be TRUE, the crate is inhibited.

Parameters:
unsigned long ext;
unsigned long inhibit;

CTCD (&ext,&demand)

CTCD tests if a CAMAC crate demand is enabled; "demand" is set to TRUE, if crate demand
is enabled.

Parameters:
unsigned long ext;
unsigned long demand;

CTGL (&ext,&demand)

CTGL tests the presence of a CAMAC crate demand; "demand" is set to TRUE, if crate
demand is present.

Parameters:
unsigned long ext;
unsigned long demand;

CDLAM (&lam,&branch,&crate.,&station,inta)

CDLAM encodes all necessary values concerning a LAM. "inta[O]" must contain a graded
LAM number, "inta[1]" may contain an event flag number. It combines the branch number,
the crate number, the station number and stores the result in "lam".

Parameters:
unsigned long lam;
unsigned long branch;
unsigned long crate;
unsigned long station;
unsigned long inta[2];

CCLM (&lam,&switch)

CCLM enables the LAM, if "switch" is set to TRUE; CCLM disables the LAM, if "switch" is
set to FALSE.

Parameters:
unsigned long lam;
unsigned long switch;

CTLM (&lam,&asserted)

CTLM tests the presence of a LAM, if "asserted" is set to FALSE, there is no LAM asserted;
if "asserted" is returned to be TRUE, a LAM is asserted.

Parameters:
unsigned long lam;
unsigned long asserted;

26 CREATIVE ELECTRONIC SYSTEMS

9.3.1 CAMAC Routines

*
* CAMAC routines for CES CBD 8210 Branch Driver
* ***
* in accordance to the ESONE standard calls.
* All parameters are long word, except data for
* CAMAC short accesses, which are word length.
*
* Implementation (interface to 0S9 C) of the functions
* cccc(&ext)
* ccci(&ext,&l)
* cccd(&ext,&l)
* cccz(&ext)
* cdreg(&ext,&b,&c,&n,&a)
* cssa(&f,&ext,&data,&q)
* csubr(&f,&ext,data,cb)
* cfsa(&f,&ext,&data,&q)
* ctci(&ext,&l)
* ctcd(&ext,&l)
* ctgl(&ext,&l)
* cdlam(&lam,&b,&c,&n,inta)
* cclm(&lam,&l)
* ctlm(&lam,&l)
*
* Processor: 68020, CALLABLE FROM C
* System : OS-9,Vers 2. 2
* Programmer: M.A.Kunze,University of Karlsruhe
* Vers .1. 2 : 28-Jul-88
*

nam CAMAC
ttl Fast 68020 CAMAC routines for 0S9 C
psect camac,0,0,0,0,0

* LOGICAL*4 definition

TRUE equ -1

* BITFIELD positions

BPOS equ 19
BLEN equ 3
BPOSB equ 32-(BPOS+BLEN)
CPOS equ 16
CLEN equ 3
CPOSB equ 32-(CPOS+CLEN)
NPOS equ 11
NLEN equ 5
NPOSB equ 32-(NPOS+NLEN)
APOS equ 7
ALEN equ 4
APOSB equ 32-(APOS+ALEN)
FPOS equ 2
FLEN equ 5
FPOSB equ 32-(FPOS+FLEN)

* CAMAC addresses in VME space

VMEAD equ $FB800000 ;BASE ADDRESS FOR STANDARD VME ACCESS
SHORT equ $00000002 ;16 BIT CAMAC ACCESS

CREATIVE ELECTRONIC SYSTEMS 27

* STATUS REGISTER

STATUS equ VMEAD+SHORT+(29<<NPOS) ; STATUS REGISTER BRANCH 0

* MACROS

GETPARM macro ;GETS A PARAMETER FROM PARM. LIST
 ifeq \1-1 ;FIRST PARAMETER
 MOVEA.L D0,\2
 endc
 ifeq \1-2 ;SECOND PARAMETER
 MOVEA.L D1,\2
 endc
 ifgt \1-2 ;FURTHER PARAMETERS FROM LINKSTACK A5
 MOVEA.L (\1-1)*4(A5),\2
 endc
 endm

F macro ;ASSEMBLE NAF
MOVE.L (\1),-(A7) ;COPY EXT TO STACK
BFEXTU (A7){BPOSB:BLEN},D1 ;NOTE BRANCH
MOVE.L \2,D0 ;FUNCTION F
BFINS D0,(A7){FPOSB:FLEN}
MOVEA.L (A7)+,\1 ;POP EXT FROM STACK
endm

NAF macro ;ASSEMBLE NAF
MOVE.L (\1),-(A7) ;COPY EXT TO STACK
BFEXTU (A7){BPOSB:BLEN},D1 ;NOTE BRANCH
MOVE.L \2,D0 ;STATION N
BFINS D0,(A7){NPOSB:NLEN}
MOVE.L \3,D0 ;SUBADDRESS A
BFINS D0,(A7){APOSB:ALEN}
MOVE.L \4,D0 ;FUNCTION F
BFINS D0,(A7){FPOSB:FLEN}
MOVEA.L (A7)+,\1 ;POP EXT FROM STACK
endm

BCNAF macro ;ASSEMBLE BCNAF
 MOVE.L (\1),-(A7) ;COPY EXT TO STACK
 MOVE.L \2,D0 ;BRANCH
 BFINS D0,(A7){BPOSB:BLEN)
 MOVE.L \3,D0 ;CRATE
 BFINS D0,(A7){CPOSB:CLEN}
 MOVE.L \4,D0 ;STATION N
 BFINS D0,(A7){NPOSB:NLEN}
 MOVE.L \5,D0 ;SUBADDRESS A
 BFINS D0,(A7){APOSB:ALEN)
 MOVE.L \6,D0 ;FUNCTION F
 BFINS D0,(A7){FPOSB:FLEN}
 MOVE.L (A7)+,(\1) ;POP EXT FROM STACK
 endm

28 CREATIVE ELECTRONIC SYSTEMS

QBIT macro ;CHECK THE Q-BIT
MOVE.L #TRUE,(\1) ;Q=TRUE
MOVE.L #STATUS,-(A7) ;PUSH ADDRESS OF STATUS ON STACK
BFINS D1,(A7){BPOSB:BLEN} ;STATUS ADDRESS FOR THIS BRANCH
MOVEA.L (A7)+,A0
MOVE.W (A0),D0
BTST.L #15,D0 ;Q RESPONSE ?
 BNE.S Q\@
CLR.L (\1) ;Q=FALSE

Q\@
endm

* CCCC (&EXT) *

*

CCCC: MOVEM.L A0,-(A7) ;SAVE REGISTERS
 GETPARM 1,A0 ;GET ADDRESS OF EXT

 NAF A0,#28,#9,#26
 TST.W (A0) ;EXECUTE CAMAC OPERATION

 MOVEM.L (A7)+,A0 ;RESTORE REGISTERS

 RTS
 align

* CCCI (&EXT,&L) *

CCCI: MOVEM.L A0-A1,-(A7) ;SAVE REGISTERS
 GETPARM 1,A0 ;GET ADDRESS OF EXT
 GETPARM 2,A1 ;GET ADDRESS OF L

 TST.L (A1) ;TEST L
 BEQ.S CCCI01 ;FALSE=0
 NAF A0,#30,#9,#26 ;SET INHIBIT
 BRA.S CCCI02
CCCI01 NAF A0,#30,#9,#24 ;REMOVE INHIBIT
CCCI02 TST.W (A0) ;EXECUTE CAMAC OPERATION

 MOVEM.L (A7)+,A0-A1 ;RESTORE REGISTERS

 RTS
 align

CREATIVE ELECTRONIC SYSTEMS 29

* CCCD (&EXT,&L) *

CCCD: MOVEM.L A0-A1,-(A7) ;SAVE REGISTERS
 GETPARM 1,A0 ;GET ADDRESS OF EXT
 GETPARM 2,A1 ;GET ADDRESS OF L

 TST.L (A1) ;TEST L
 BEQ.S CCCD01 ;FALSE=0
 NAF A0,#30,#10,#26 ;ENABLE BD OUTPUT
 BRA.S CCCI02
CCCD01 NAF A0,#30,#10,#24 ;DISABLE BD OUTPUT
CCCD02 TST.W (A0) ;EXECUTE CAMAC OPERATION
*
 MOVEM.L (A7)+,A0-A1 ;RESTORE REGISTERS
*
 RTS
 align

* CCCZ (&EXT) *

CCCZ: MOVEM.L A0,-(A7) ;SAVE REGISTERS
 GETPARM 1,A0 ;GET ADDRESS OF EXT
*
 NAF A0,#28,#8,#26 ;DATAWAY RESET
 TST.W (A0) ;EXECUTE CAMAC OPERATION

 MOVEM.L (A7)+,A0 ;RESTORE REGISTERS

 RTS
 align

* CDREG (&EXT,&B,&C,&N,&A) *

CDREG: LINK A5,#00 ;LINK TO PARAMETER LIST
 MOVEM.L A0-A4,-(A7) ;SAVE 5 REGISTERS
*
 GETPARM 1,A0 ;GET ADDRESS OF EXT
 GETPARM 2,A1 ;GET ADDRESS OF B
 GETPARM 3,A2 ;GET ADDRESS OF C
 GETPARM 4,A3 ;GET ADDRESS OF N
 GETPARM 5,A4 ;GET ADDRESS OF A
*
 CLR.L (A0) ;RESET EXT
 BCNAF A0,(A1),(A2),(A3),(A4),#0
 ORI.L #VMEAD+SHORT,(A0) ;16 BIT ACCESS DEFAULT
*
 MOVEM.L (A7)+,A0-A4 ;RESTORE REGISTERS
*
 UNLK A5
 RTS
 align

30 CREATIVE ELECTRONIC SYSTEMS

* CSSA (&F,&EXT,&DATA,&Q) *

CSSA: LINK A5,#00 ;LINK TO PARAMETER LIST
 MOVEM.L A0-A3,-(A7) ;SAVE 4 REGISTERS
*
 GETPARM 1,A0 ;GET ADDRESS OF F
 GETPARM 2,A1 ;GET ADDRESS OF EXT
 GETPARM 3,A2 ;GET ADDRESS OF DATA
 GETPARM 4,A3 ;GET ADDRESS OF Q
*
 MOVE.L (A0),D0 ;GET FUNCTION CODE
 MOVE.L (A1),-(A7) ;PUSH EXT ON STACK
 BFEXTU (A7){BPOSB:BLEN},D1 ;GET BRANCH NUMBER
 BFINS D0,(A7){FPOSB:FLEN} ;INSERT FUNCTION
 MOVEA.L (A7)+,A1 ;SET UP CAMAC ADDRESS
 BTST #3,D0 ;CONTROL?
 BNE.S CSSA02
 BTST #4,D0 ;WRITE?
 BNE.S CSSA01
 MOVE.W (A1),(A2) ;READ
 BRA.S CSSA03
*
CSSA01 MOVE.W (A2),(A1) ;16 BIT WRITE
 BRA.S CSSA03
*
CSSA02 TST.W (A1) ;CONTROL
*
CSSA03 QBIT A3
*
 MOVEM.L (A7)+,A0-A3 ;RESTORE REGISTERS
*
 UNLK A5
 RTS
 align

* CSUBR (&F,&EXT,&DATA,&CB) *

*
CSUBR: LINK A5,#00 ;LINK TO PARAMETER LIST
 MOVEM.L A0-A3/D2,-(A7) ;SAVE REGISTERS
*
 GETPARM 1,A0 ;GET ADDRESS OF F
 GETPARM 2,A1 ;GET ADDRESS OF EXT
 GETPARM 3,A2 ;GET ADDRESS OF DATA
 GETPARM 4,A3 ;GET ADDRESS OF CB
*
 MOVE.L (A3),D2 ;GET LOOP COUNT FROM CB[0]
 SUBQ.L #1,D2 ;ADJUST LOOP COUNT
 BGE.S CSUBROK ;LOOP COUNT>0
 CLR.L 4(A3) ;CLEAR QBIT IN CB[1]
 BRA.S CSUBR04 ;ERROR EXIT
*

CREATIVE ELECTRONIC SYSTEMS 31

CSUBROK MOVE.L (A0),D0 ;GET FUNCTION CODE
 MOVE.L (A1),-(A7) ;PUSH EXT ON STACK
 BFEXTU (A7){BPOSB:BLEN},D1 ;GET BRANCH NUMBER
 BFINS D0,(A7){FPOSB:FLEN} ;INSERT FUNCTION
 MOVEA.L (A7)+,A1 ;SET UP CAMAC ADDRESS
 BTST #3,D0 ;CONTROL?
 BNE.S CSUBR02
 BTST #4,D0 ;WRITE?
 BNE.S CSUBR01
CSUBR00 MOVE.W (A1),(A2)+ ;READ
 DBRA D2,CSUBR00
 BRA.S CSUBR03
*

CSUBR01 MOVE.W (A2)+,(A1) ;16 BIT WRITE
 DBRA D2,CSUBR01
 BRA.S CSUBR03
*
CSUBR02 TST.W (A1) ;CONTROL
 DBRA D2,CSUBR02
*
CSUBR03 ADDA.L #4,A3 ;GET CB[1]
 QBIT A3
*
CSUBR04 MOVEM.L (A7)+,D2/A0-A3 ;RESTORE REGISTERS
*
 UNLK A5
 RTS
 align

* CFSA (&F,&EXT,&DATA,&Q) *

*
CFSA: LINK A5,#00 ;LINK TO PARAMETER LIST
 MOVEM.L A0-A3,-(A7) ;SAVE 4 REGISTERS
*
 GETPARM 1,A0 ;GET ADDRESS OF F
 GETPARM 2,A1 ;GET ADDRESS OF EXT
 GETPARM 3,A2 ;GET ADDRESS OF DATA
 GETPARM 4,A3 ;GET ADDRESS OF Q

 MOVE.L (A0),D0 GET FUNCTION CODE
 MOVE.L (A1),-(A7) ;PUSH EXT ON STACK
 BFEXTU (A7){BPOSB:BLEN},D1 ;GET BRANCH NUMBER
 BFINS D0,(A7){FPOSB:FLEN} ;INSERT FUNCTION
 BCLR #1,(A7) ;ENABLE LONG TRANSFER
 MOVEA.L (A7)+,A1 ;SET UP CAMAC ADDRESS
 BTST #3,D0 ;CONTROL?
 BNE.S CFSA02
 BTST #4,D0 ;WRITE?
 BNE.S CFSA01
 MOVE.L (A1),(A2) ;24 BIT READ
 BRA.S CFSA03
*
CFSA01 MOVE.L (A2),(A1) ;24 BIT WRITE
 BRA.S CFSA03
*
CFSA02 ADDA.L #2,A1 ;16 BIT TRANSFER
 TST.W (A1) ;CONTROL
*
CFSA03 QBIT A3

32 CREATIVE ELECTRONIC SYSTEMS

*
 MOVEM.L (A7)+,A3 ;RESTORE REGISTERS
*
 UNLK A5
 RTS
 align

* CTCI (&EXT,&L) *

*
CTCI: MOVEM.L A0-A1,-(A7) ;SAVE REGISTERS
 GETPARM 1,A0 ;GET ADDRESS OF EXT
 GETPARM 2,A1 ;GET ADDRESS OF L
 NAF A0,#30,#9,#27
 TST.W (A0) ;EXECUTE CAMAC OPERATION
*
 QBIT A1
*
 MOVEM.L (A7)+,A0-A1 ;RESTORE REGISTERS
 RTS
 align

* CTCD (&EXT,&L) *

*
CTCD: MOVEM.L A0-A1,-(A7) ;SAVE REGISTERS
 GETPARM 1,A0 ;GET ADDRESS OF EXT
 GETPARM 2,A1 ;GET ADDRESS OF L
*
 NAF A0,#30,#10,#27
 TST.W (A0) ;EXECUTE CAMAC OPERATION
*
QBIT A1
*
 MOVEM.L (A7)+,A0-A1 ;RESTORE REGISTERS
*
 RTS
 align

* CTGL (&EXT,&L) *

*
CTGL: MOVEM.L A0-A1,-(A7) ;SAVE REGISTERS
 GETPARM 1,A0 ;GET ADDRESS OF EXT
 GETPARM 2,A1 ;GET ADDRESS OF L
*
 BFEXTU (A0){BPOSB:BLEN},D1 ;GET BRANCH NUMBER
 MOVE.L #TRUE,(A1) ;Q=TRUE
 MOVE.L #STATUS,-(A7) ;PUSH ADDRESS OF STATUS ON STACK
 BFINS D1,(A7){BPOSB:BLEN} ;STATUS ADDRESS FOR THIS BRANCH
 MOVEA.L (A7)+,A0
 MOVE.L (A0),D0
 BTST.L #12,D0 ;BRANCH DEMAND
 BNE.S CTGL01
 CLR.L (A1) ;Q=FALSE
*
CTGL01 MOVEM.L (A7)+,A0-A1 ;RESTORE REGISTERS
*
 RTS
 align

CREATIVE ELECTRONIC SYSTEMS 33

*

* CDLAM (LAM,B,C,N,A,INTA) *

CDLAM: LINK A5,#00 ;LINK TO PARAMETER LIST
 MOVEM.L A0-A5,-(A7) ;SAVE 5 REGISTERS
*
 GETPARM 1,A0 ;GET ADDRESS OF LAM
 GETPARM 2,A1 ;GET ADDRESS OF B
 GETPARM 3,A2 ;GET ADDRESS OF C
 GETPARM 4,A3 ;GET ADDRESS OF N
 GETPARM 5,A4 ;GET ADDRESS OF A
 GETPARM 6,A5 ;GET ADDRESS OF GL
*
 CLR.L (A0) ;RESET LAM
 BCNAF A0,(A1),(A2),(A3),(A4),(A5)
 ORI.L #VMEAD+SHORT,(A0) ;16 BIT ACCESS DEFAULT
*
 MOVEM.L (A7)+,A0-A5 ;RESTORE REGISTERS
*
 UNLK A5
 RTS
 align

* CTLM (LAM,L) *

*
CTLM: MOVEM.L A0-A1,-(A7) ;SAVE REGISTERS
*
 GETPARM 1,A0 ;GET ADDRESS OF LAM
 GETPARM 2,A1 ;GET ADDRESS OF L
*
 F A0,#8 ;FUNCTION 8
 TST.W (A0) ;EXECUTE CAMAC OPERATION
*
 QBIT A1
*
 MOVEM.L (A7)+,A0-A1 ;RESTORE REGISTERS
*
 RTS
 align

* CCLM (LAM,L) *

CCLM: MOVEM.L A0-A1,-(A7) ;SAVE REGISTERS
*
 GETPARM 1,A0 ;GET ADDRESS OF LAM
 GETPARM 2,A1 ;GET ADDRESS OF L
*
 TST.L (A1) ;TEST L
 BEQ.S CCLM01 ;FALSE=0
 F A0,#26 ;FUNCTION 26
 BRA.S CCLM02 ;ENABLE LAM
CCLM01 F A0,#24 ;FUNCTION 24
CCLM02 TST.W (A0) ;EXECUTE CAMAC OPERATION
*
 MOVEM.L (A7)+,A0-A1 ;RESTORE REGISTERS

34 CREATIVE ELECTRONIC SYSTEMS

*
 RTS
 align
*
 endsect

9.3.2 CAMAC Test Program

**
* CAMAC test program:
* Transfers 16kwords of data between 'array' in a
* VME crate and a LeCroy 4302 memory in a CAMAC crate.
*
* Language : C
* System : OS-9 Vers.2.2
* Programmer : M.A.KUNZE,University of Karlsruhe
* Vers.1.0 : 17-Jun-88

#include <stdio.h>

main()

{

 struct { char dummy; /* holds system time */
 char hour;
 char mins;
 char secs;
 } time;

 struct { unsigned short year; /* holds system date */
 char month;
 char day;
 } date;

 struct { unsigned short tps; /* holds timer information */
 unsigned short tics;
 } tick;

 short day; /* holds day of week */

 unsigned long t1,t2;
 int t3;
 float dt;
 unsigned long b=0,c=1,n=5,a=0,f=0; /* Location of CAMAC mem */
 unsigned long ext=0,q=0,off=0,cb[2];
 int blocks=1;
 unsigned short data;
 unsigned short *array;
 register
 unsigned short *pointer,i,j;

/**/

_sysdate(2,&time,&date,&day,&tick); /* get and print date*/

printf("\nCamac Test on %2d-%2d-%4d at %2d:%2d:%2d\n",
date.day,date.month,date.year,time.hour,time.mins,time.sec)

cb[0] = 16384L; /* length of buffer in words */
array = 0xfb200000; /* address of VME buffer */

CREATIVE ELECTRONIC SYSTEMS 35

pointer = array; /* fill buffer with ascending numbers */
for (i=0;i<cb[0];i++)
 *pointer++ = i;

/* printf("\nEnter b c n a :");
 scanf("%1d %1d %1d ^%1d",&b,&c,&n,&a);
* /
 CDREG(&ext,&b,&c,&n,&a);
 CCCZ(&ext);
 CCCC(&ext);
 CCCI(&ext,&off);

 f = 17; /* switch memory to CAMAC */
 a = 1;
 data = 1;
 CDREG(&ext,&b,&c,&n,&a);
 printf("\nExt: %1x",ext);
 CSSA(&f,&ext,&data,&q);
 printf("\nQ-response switch CAMAC: %1x",q);

 a = 0;
 CDREG(&ext,&b,&c,&n,&a);
 printf("\nExt: %1x",ext);

 while (blocks>0) {
 printf("\n\nEnter number of data blocks [%1d]: ",blocks);
 scanf("%1d",&blocks);
 printf("\nStart %d * %1d read and write transfers",blocks,cb[0]);
 f = 17; /* reset address pointer */
 data = 0;
 CSSA(&f,&ext,&data,&q);
 printf("\nQ-response reset address: %1x",q);

 _sysdate(3,&t1,&date,&day,&tick); /* get start time */
 t1 = t1*tick.tps + tick.tics;

#ifndef SNGL /* CAMAC block transfer */
 for (i=0;i<blocks;i++) {

f = 16; /* write upwards */
CSUBR (&f,&ext,array,cb);
f = 2; /* read downwards */
CSUBR (&f,&ext,array,cb);

 }
#else /* single CAMAC transfer */
 for (i=0;i<blocks;i++) {

f = 16; /* write upwards */
 for (j=0;j<cb[0];j++) CSSA (&f,&ext,array,&q);
 f = 2; /* read downwards */
 for (j=0;j<cb[0];j++) CSSA (&f,&ext,array,&q);
 }
#endif
 _sysdate(3,&t2,&date,&day,&tick); /* get and print stop time */

 t2 = t2*tick.tps + tick.tics;
 t3 = tick.tps;
 dt = (t2-t1) * 1000000. / (float) (t3 * 2. * cb[0] * blocks);

 printf("\nQ-response data transfer: %1x\n",cb[1]);
 for (i=0;i<10;i++)

 printf("\nData %x",array[i]);
 printf("\n\nExecution time: %1d / %d secs.",(t2-t1),t3);

 printf("\n->%6.3f microsecs. / CAMAC operation",dt);
 }
}

	1. INTRODUCTION
	1.1 Overview
	1.2 Address Mapping
	1. 3 Selection of Internal Registers

	2. INTERNAL REGISTERS
	2. 1 Control & Status Register - CSR
	2. 2 Interrupt Flag Register - IFR
	2. 3 Interrupt Controller Registers - ICR
	2. 4 Crate Address Register - CAR
	2. 5 BTB Registers - BTB
	2.6 BZ Generation
	2.7 GL Register
	2.8 Address Modifier

	3. CAMAC TRANSFERS
	3.1 Types of Transfer
	3. 2 Control and Execution of CAMAC Cycles
	3. 3 CAMAC Status Information
	3.4 CAMAC Time-Out
	3.5 24-bit CAMAC Transfers
	3.6 GL Cycles

	4. INTERRUPTS
	4.1 General Information
	4. 2 External Interrupts - IT2 and IT4
	4. 3 LAM Handling
	4.3.1 GL Scanning
	4.3.2 Information on Interrupt Handling.

	5. DMA INTERFACE
	6. FRONT PANEL
	6.1 CAMAC Interface
	6. 2 BRANCH Selector Plus Input / Output Sockets
	6.3 LEDs

	7. CBD 8210 CHARACTERISTICS
	8. JUMPER SETTINGS
	9. ANNEXES
	9. 1 Contact Assignments at Branch Highway Ports
	9. 2 Jumpers Location
	9.3 CAMAC Library
	9.3.1 CAMAC Routines
	9.3.2 CAMAC Test Program

