196 Heat and Thermodynamics
8-6 Conditions for Reversibility

Most processes that occur in nature are included among the general types
of process listed in the preceding articles. Living processes, such as cell
division, tissue growth, etc., are no exception. If one takes into account all
the interactions that accompany living processes, such processes are irreversi-
ble. It is a direct consequence of the second law of thermodynamics that
all natural spontaneous processes are irreversible.

A careful inspection of the various types of natural process shows that all
involve one or both of the following features:

1 The conditions for mechanical, thermal, or chemical equilibrium,
i.e., thermodynamic equilibrium, are not satisfied.
Dissipative effects, such as viscosity, friction, inelasticity, electric
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resistance, and magnetic hysteresis, are present.

For a process to be reversible, it must not possess these features. If a process
is performed quasi-statically, the system passes through states of thermo-
dynamic equilibrium, which may be traversed just as well in one direction
as in the opposite direction. If there are no dissipative effects, all the work
done by the system during the performance of a process in one direction can
be returned to the system during the reverse process. We are led, therefore,
to the conclusion that a process will be reversible when (1) it is performed
quasi-statically and (2) it is not accompanied by any dissipative effects.

Since it is impossible to satisly these two conditions perfectly, it is obvious
that a reversible process is purely an ideal abstraction, extremely useful for
theoretical calculations (as we shall see) but quite devoid of reality. In this
sense, the assumption of a reversible process in thermodynamics resembles
the assumptions made so often in mechanics, such as those which refer to
weightless strings, frictionless pulleys, and point masses.

A heat reservoir was defined as a body of very large mass capable of absorb-
ing or rejecting an unlimited supply of heat without suffering appreciable
changes in its thermodynamic coordinates. The changes that do take place
are so very slow and so minute that dissipative actions never develop. There-
fore, when heat enters or leaves a reservoir, the changes that take place in the reservoir
are the same as those which would take place if the same quantity of heat were transferred
reversibly.

It is possible in the laboratory to approximate the conditions necessary
for the performance of reversible processes. For example, if a gas is confined
in a cylinder equipped with a well-lubricated piston and is allowed to expand
very slowly against an opposing force provided either by an object suspended
from a frictionless pulley or by an elastic spring, the gas undergoes an approxi-
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mately reversible process. Similar considerations apply to a wire and to a
surface film.

A reversible transfer of electricity through an electric cell may be imagined
as follows: Suppose that a motor whose coils have a negligible resistance is
caused to rotate until its back emf is only slightly different from the emf of
the cell. Suppose further that the motor is coupled either to an object sus-
pended from a frictionless pulley or to an eclastic spring. If neither the cell
itself nor the connecting wires to the motor have appreciable resistance, a
reversible transfer of electricity takes place.

In order to arrive at conclusions concerning the equilibrium states of
thermodynamic systems, it is often necessary to invoke some sort of process in
which the system passes through these states. To assume the process to be
quasi-static only, often is not sufficient, for if dissipative processes are present
there may be heat flows or internal energy changes of neighboring systems
(envelopes, containers, surroundings) that may limit the validity of the argu-
ment. In order to ensure that equilibrium states of the system only are con-
sidered—without having to take account of the effect of dissipated work in
the system itself or in some other neighboring body—it is useful to invoke the
concept of a reversible process, even though this assumption may at times seem
a bit drastic.

8-7 Existence of Reversible Adiabatic Surfaces

Up to this point, the only consequence of the second law of thermo-
dynamics that has been drawn is the irreversibility of natural, spontaneous
processes. T'o develop further consequences, it has been customary to proceed
along either of two lines: the engineering method, due to Carnot, Kelvin,
and Clausius; and the axiomatic method, due to the Greek mathematician
C. Caratheodory. f The engineering method is based upon the Kelvin-Planck
formulation of the second law or its equivalent, the Clausius statement. One
starts first by defining a particularly simple reversible cycle called the
Carnot cycle and then proving that an engine operating in this cycle between
reservoirs at two different temperatures is more efficient than any other engine
operating between the same two reservoirs. After proving that all Carnot
engines operating between the same two reservoirs have the same efficiency,
regardless of the substance undergoing the cycle, the Kelvin temperature
scale is defined so as to be independent of the properties of any particular
kind of thermometer. A theorem called the Clausius theorem is then derived,
and from it the existence of the entropy function. The engincering method of
developing the consequences of the Kelvin-Planck or Clausius statements of

T C. Caratheodory, Math. Ann., 67:355 (1909) (in German).
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the second law is rigorous and general. If one is interested in the design and
manufacture of engines and refrigerators, it is essential to employ principles
that hold regardless of the nature of the materials involved. If, however, one
is interested in the behavior of systems, their coordinates, their equations of
state, their properties, their processes, etc., apart from their use in the cylinders
of engines and refrigerators, then it is desirable to adopt a method more
closely associated with the coordinates and equations of actual systems.

In the first decade of the twentieth century Caratheodory, to replace the
Kelvin-Planck and Clausius statements of the second law, presented this
axiom: In the neighborhood (however close) of any equilibrium siate of a system of any
number of thermodynamic coordinaies, there exist states thal cannot be reached (are
inaccessible) by reversible adiabatic processes. He showed how to derive the Kelvin
temperature scale from this axiom and how to derive every other consequence
of the enginecring method. Physicists (Born, Ehrenfest, Landé) recognized
the importance of Caratheodory’s work, but since the mathematics needed to
deal with Caratheodory’s axiom presented much more difficulty than the
simple manipulations involving outputs and inputs of engines and refriger-
ators, other physicists were slow in adopting his methods. In recent years,
mainly because of the activities of Pippard, Turner, Landsberg, and Sears, T
the mathematical machinery of the Caratheodory method has been con-
siderably simplified, and now it appears that the axiom itself can be dispensed
with entirely. All the consequences of the Caratheodory axiom follow directly
from the Kelvin-Planck statement of the second law.

Consider a system described with the aid of five thermodynamic coordi-
nates: the empiric temperature ¢, measured on any scale whatsoever; two
generalized forces ¥ and Y'; and two corresponding generalized displace-

»
ments X and X', For such a system, the first law for a reversible process is

dQ = dU + Y dX 4+ Y’ dX/,

and because of the existence of two equations of state, only three of the
coordinates are independent. At first, let us choose these coordinates to be
U, X, and X’. A system of three independent variables is chosen for two
reasons: (1) it enables us to use simple three-dimensional graphs, and (2) all
conclusions concerning the mathematical properties of the differential dQ
will hold equally well for all systems with more or fewer than three independent
variables.

In Fig. 8-3, the three independent variables U, X, and X’ are plotted along
three rectangular axes, and an arbitrarily chosen equilibrium state ¢ is indi-

T A. B. Pippard, “Elements of Classical Thermodynamies,” Cambridge University
Press, New York, 1957, p. 38; L. A. Turner, dm. J. Phys., 28:781 (1960); P. T. Landsberg,
Nature, 201:485 (1964); F. W. Sears, Adm. J. Phys., 31:747 (1963).
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Fig. 8-3 Both f1 and [, lying on a line of constant X and X', cannot be reached by re-
versible adiabatic processes from 1,

cated. Let f; be an equilibrium state that the system can reach by means of a
reversible adiabatic process. Through f; draw a vertical line for which the
values of X and X" are constant at every point. Let f, be any other equilibrium
state on this vertical line. We now proceed to prove that both states fiand fs
cannot be reached by reversible adiabatic processes from i. Assume that it is possible
for the system to proceed along either of the two reversible adiabatic paths
i = fiori— fo Let the system start at 7, proceed to fi, then to f,, and then
back to 7 along f; — ¢, which, being a reversible path, can be traversed in
either direction. Since f; lies above fi, the system undergoes an increase of
energy at constant X and X", during which process no work is done. It follows
from the first law that heat Q must be absorbed in the process fi—>fs. I ghe
reversible adiabatic processes, however, no heat is transferred but work W is
done. In the entire cycle ififux, there is no energy change, and therefore
Q = W. The system has thus performed a cycle in which the sole effect is the
absorption of heat and the conversion of this heat completely into work.
Since this violates the Kelvin-Planck statement of the second law, it follows
that both fi and f, cannot be reached by reversible adiabatic processes. Only
one point on the line of constant X and X' can be reached by a reversible adiabatic
process from i.

For a different line (different X; and X7}), there would be another single
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point accessible from ¢ by a reversible adiabatic process, and so on. A few
such points, fi, fs, ctc., are shown in Fig. 8-4. The locus of all points accessible
from i by reversible adiabatic processes is a space of dimensionality one less than three;
in other words, these points lie on a two-dimensional surface. 1f the system were
described with the aid of four independent coordinates, the states accessible
from any given equilibrium state ¢ by reversible adiabatic processes would lie
on a three-dimensional hypersurface, and so on.

In what is to follow, it is more convenient to choose as one of the independ-
ent coordinates the empiric temperature ¢ instead of the energy U. Since, for
a given 7, a reversible adiabatic surface has been shown to exist in a /XX’
space, such a surface must also exist in a tXX" space, although its shape might
be quite different.

With a system of three independent coordinates ¢, X, and X”, the reversible
adiabatic surface comprising all the equilibrium states that are accessible
from ¢ by reversible adiabatic processes may be expressed by the equation

o(t,X,X’) = const., (8-1)

where ¢ represents some as yet undetermined function. Surfaces correspond-
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Fig. 8-5 If two reversible adiabatic surfaces could intersect, it would be possible to violate
the second laww by performing the cycle if \fa.

ing to other initial states would be represented by different values of the
constant.

Reversible adiabatic surfaces cannot intersect, for if they did it would be
possible, as shown in Fig. 8-5, to proceed from an initial equilibrium state ;
on the curve of intersection to two different final states f; and f,, having the
same X; and X7}, along reversible adiabatic paths. We have just shown that
this is impossible.

) 8-8 Integrability of dQ

It has been emphasized that dWW and dQ are inexact differentials; there i
are no functions W and Q representing, respectively, the work and heat of a
body. When a system can be described with the aid of two independent
thermodynamic coordinates, say, a temperature ¢ (on any scale) and a
generalized displacement X, then if ¥ is the generalized force,

Fig. 8-4 Al states that can be reached by reversible adiabatic processes starting al i lie on a

surface. dQ =dU+ YdX.




202 Heat and Thermodynamics

8-8 Reversibility and the Kelvin Temperature Scale 203

Regarding U as a function of ¢ and X, we get

= () [+ G

where (8U/dt)x, ¥, and (dU/dX), are known functions of  and X. A reversi-
ble adiabatic process for this system is represented by the equation

104 all
oo @ e

Solving for di/dX, we get

@\ _ _ Y+ (3U/sX),
XL AU/ x

The right-hand member is known as a function of ¢ and X, and therefore the
derivative d1/dX, representing the slope of an adiabat on a (X diagram, is
known at all points. Equation (8-2) has therefore a solution consisting of a
family of curves, and the curve through any one point may be written

o(t,X) = const.

A set of curves is obtained when different values are assigned to the constant.
T'he existence of the family of curves o(t,X) = const., representing reversible adiabatic
processes, follows from the fact that there are only two independent coordinates, and not
from any law of physics.

When three or more independent coordinates are needed to describe a
system, the situation is quite different. The second law of thermodynamics is
needed to enable us to conclude that: i

Through any arbitrary initial-state point, all reversible adiabatic processes lie on a
surface, and reversible adiabatics through other initial states determine a family of
nonintersecting surfaces.

Consider a system whose coordinates are the empiric temperature ¢, two
generalized forces ¥ and ¥”, and two generalized displacements X and X’
The first law for a reversible process is expressed by the equation

dQ = dU + Y dX + Y’ dX', (8-3)

where U, Y, and Y’ are functions of ¢, X, and X’. Since the ¢, X, X’ space is
subdivided into a family of nonintersecting reversible adiabatic surfaces,

o(t,X,X’) = const.,

where the constant can take on various values g1, 73, . . . , any point in this
space may be determined by specifying the value of ¢ along vuth Xand X', so
that we may regard the internal energy function U as well as ¥ and V' as
functions of ¢, X, and X”. Then,

7 c'}L 6U au

ax’,

al aly oy el i
and dQ = —da' 4 (Y = 5‘{) dX + (Y + aX,) dX’. (8-4)

Since the coordinates o, X, and X’ are independent variables, this equation
must be true for all values of do, X, and 4X’. Suppose that two of the differ-
entials, do and dX, are zero and that 4X” is not. The provision that do = 0
(or ¢ = const.) is the condition for an adiabatic process in which dQ =
and therefore the coefficient of X’ must vanish. If we take do and dX’ to be
zero, then by the same reasoning the coefficient of X must vanish. It follows
therefore that, in order for the coordinates o, X, X’ to be independent, and
also for dQ to be zero whenever do is zero, the equation for ¢Q must reduce

to the form
a=(3),, (-5)
X, X'

If we define a function A by the equation

S 56
do XX

dQ = \ do. (8-7)

we get the result

According to its definition, given in Eq. (8-6), X is a function of , X, and
X’. Since ¢ is a function of ¢, X, and X’, however, we may imagine X’ to be
eliminated, with the result that X is a function of ¢, o, and X.

It is seen from Eq. (8-7) that the function 1/) is an integrating factor, such
that when dQ is multiplied by 1/X the result is an exact differential do. Now,
an infinitesimal of the type

Pdi=l=Q dy - Rdafr w7
known as a linear differential form or a Pfaffian expression, when it involves three

or more independent variables, does not admit, in general, of an integrating
factor. It is only because of the existence of the second law that the differential form for
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Fig. 8-6 Two reversible adiabatic surfaces, infinitesimally close. When the process is ref-
resented by a curve connecting the two surfaces, heat AQ = N do is transferred. '

dQ referring to a physical system of any number of independent coordinates possesses
an integraling factor.

Two infinitesimally neighboring reversible adiabatic surfaces are shown in
Fig. 8-6. One surface is characterized by a constant value of the function o,
and the other by a slightly different value ¢ 4 do. In any process represented
by a curve on either of the two surfaces dQ = 0. When a reversible process is
represented by a curve connecting the two surfaces, however, heat dQ = A do
is transferred. All curves joining the two surfaces represent processes with the
same do, but the values of \ are different.

8-9 Physical Significance of \

The various infinitesimal processes that may be chosen to connect the two
neighboring reversible adiabatic surfaces shown in Fig. 8-6 involve the same
change of o but take place at different values of A, because \ is a function of ¢,
o, and X. To find the temperature dependence of A, we go back to the funda-
mental concept of temperature as the property of a system determining ther-
mal equilibrium between it and another system. Let us therefore consider two
systems, each of three independent coordinates (for mathematical generality),
in contact through a diathermic wall, as depicted schematically in Fig. 8-7.
The two systems are assumed to be at all times in thermal equilibrium having
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a common temperature #, and together they constitute a composite system
with five independent coordinates.

1 Main system. The three independent coordinates are ¢, X, and X
and the reversible adiabatic surfaces are specified by different values
of the function ¢ of ¢, X, and X’. When heat dQ is transferred, o
changes by do, and dQ = )\ do where ) is a function of ¢, o, an X,

2 Reference system.t The three independent coordinates are ¢, X, and
X', and the reversible adiabatic surfaces are specified by different
values of the function ¢ of #, X, and X’. When heat dQ is transferred,
¢ changes by d¢, and dQ = X d¢ where X is a function of ¢, ¢, and Af

3 Composite system. The five independent coordinates are ¢, X, X', X,
and X, and the reversible adiabatic hypersurfaces are specified by
different values of the function e of these independent variables.

Using the equation for ¢ of the main system, we may express X’ in terms
of t, ¢, and X. Similarly, using the equation for ¢ of the reference system, z

1 The diacritical mark or accent over the symbols referring to the reference system is
called a circumflex.

Diathermic
wall
Main system Reference syst,em
A A
R e
) A
o(t, X, X' 3(:,25:, X
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a(t, o, X) AL, o, X))
hS i
-
Composite system
% X X | X

A N
olt, oo X X)
A A
Ao o X, X)

Fig. 8-7 Two systems in thermal equilibrium, constituting a composite system receiving heat
from a reservorr.
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may be expressed in terms of ¢, ¢, and X. The primed quantities X’ and £’
may therefore be eliminated from the expression for e of the composite sys-
tem, and o may be regarded as a function of ¢, o, ¢, X, and X. For an infinitesi-
mal process between two neighboring reversible adiabatic hypersurfaces
specified by ¢ and o + de, the heat transferred is dQ = \ do, where \ is
also a function of ¢, ¢, ¢, X, and X. We have

do do do do
d:r—-a—a’£+£da-+a& 5

Rl s 8-8
o (8-8)

; do
a’ar + ﬁa’X e

Now suppose that, in a reversible process, there is a transfer of heat dQ
between the composite system and an external reservoir, as shown in Fig. 8-7,
with heats dQ and dQ being transferred, respectively, to the main and to the
reference systems. Then,

dQ = dQ + dq,
and Ndo = \do + }\ ds,
or da = %a’o -+ %d&. (8-9)

Comparing the two expressions for de given by Egs. (8-8) and (8-9), we get
— =0, — =0, and — = 0;
therefore o does not depend on ¢, X, or X but only on ¢ and ¢. That is,

o = o(o,d). (8-10)

Again comparing the two expressions for de, we sece that

=1}

Sl
da

— au.

A
and i b 5‘0‘: N

(8-11)

>l >

therefore the two ratios \/\ and /N are also independent of ¢, X, and X.
These two ratios depend only on the o’s, but each separate N must depend on
temperature as well. [For example, if X depended only on ¢ and on nothing else,
then since dQ = X\ do, dQ would equal f(o) do, which is an exact differential !]
In order, therefore, for each A to depend on temperature, and at the same
time for the ratios of the \’s to depend only on the ¢’s, the N’s must have the
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following structure:

A = ¢(8)f(a),
A = o(t)f(8), (8-12)
and A= ¢(t)g(o,d).

(The quantity \ cannot contain X, nor can \ contain X, since A\/\ and A/
must be functions of the ¢’s only.)

Referring now only to our main system as representative of any system of
any number of independent coordinates, we have, from the top line of Eq.
(8-12),

dQ = ¢()f(o) do. (8-13)

Since f(o) do is an exact differential, the quantity 1,/¢(t) is an integrating factor
for dQ. It is an extraordinary circumstance that not only does an integrating
factor exist for the dQ of any system, but this integrating factor is a function of
temperature only and is the same function for all systems! This universal character of
¢(t) enables us to define an absolute temperature.

The fact that a system of #wo independent variables has a dQ which always
admits an integrating factor regardless of the second law is interesting, of
course; but its importance in physics is not established until it is shown that the
integrating factor is a function of temperature only and that it is the same
function for all systems.

8-10 Kelvin Temperature Scale

Consider a system of three independent variables ¢, X, and X, for which
two isothermal surfaces and reversible adiabatic surfaces are drawn in Fig.
8-8. Suppose there is a reversible isothermal transfer of heat Q between the
system and a reservoir at the temperature ¢, so that the system proceeds from
a state b, lying on a reversible adiabatic surface characterized by the value
o1, to another state ¢, lying on another reversible adiabatic surface specified
by o11. Then, since Eq. (8-13) tells us that dQ = ¢(¢) f(¢) do We have

Q=¢® ["f0)ds (at const. ).

For any reversible isothermal process @ — & at the temperature ¢ between the
same ltwo reversible adiabatic surfaces, the heat Qj is

Qs = olts) [, ¥ f(o) do (at const. 1.
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Fig. 8-8 Tiwo isothermal heat transfers, Q at ¢ from b to ¢ and Qs at t3 from a to d, between
the same two reversible adiabatic surfaces o1 and o11. The cycle abeda is a Carnot cyele.

Taking the ratio of Q to Qs we get

Q _ () _  afunction of the temp. at which Q is transferred

Qs ¢(ts)  the same function of temp. at which Qy is transferred’

therefore we define the ratio of two Kelvin temperatures 7/ Ty by the relation

Q (betweenorand oprat 7) _ 7 (8-14)
Q3 (between oy and o1r at Ty) e i

Thus, two temperatures on the Kelvin scale are to each other as the heats transferred
between the same two reversible adiabatic surfaces at these two temperatures. It is seen
that the Kelvin temperature scale is independent of the peculiar character-
istics of any particular substance. It therefore supplies exactly what is lacking
in the ideal-gas scale.

If the temperature 77 is taken arbitrarily to be the triple point of water
(the standard fixed point) and T is chosen to have the value 273.1 6°K, then
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the Kelvin temperature is defined to be

(between the same two re-
versible adiabatic surfaces).

T = 273.16°K 83 (8-15)

To measure a Kelvin temperature, we must therefore measure or calculate
the heats transferred at the unknown temperature and at the triple point of
water during reversible isothermal processes between the same two reversible
adiabatic surfaces. Comparing this equation with the corresponding equation
for the ideal-gas temperature

s
lim (PV);

it is seen that, in the Kelvin scale, @ plays the role of a “thermometric prop-
erty.” This does not have the objection attached to a coordinate of an arbi-
trarily chosen thermometer, however, inasmuch as Q/Q; is independent of
the nature of the system.

It follows from Eq. (8-15) that the heat transferred isothermally between
two given reversible adiabatic surfaces decreases as the temperature decreases.
Conversely, the smaller the value of @, the lower the corresponding 7". The
smallest possible value of Q is zero, and the corresponding 7" is absolute zero.
Thus, if a system undergoes a reversible isothermal process between fwo reversible
adiabatic surfaces without transfer of heat, the temperature at which this process takes
place is called absolule zero.

It should be noticed that the definition of absolute zero holds for all sub-
stances and is therefore independent of the peculiar properties of any one
arbitrarily chosen substance. Furthermore, the definition is in terms of purely
macroscopic concepts. No reference is made to molecules or to molecular
energy. Whether absolute zero may be achieved experimentally is a question
that we shall defer until a later chapter.

8-11 Equality of Ideal-gas Temperature
and Kelvin Temperature

For the sake of generality, systems with three or more independent coordi-
nates have been used in most of the discussions in this chapter. The systems
encountered most frequently in practical applications of thermodynamics,
however, usually have no more than two independent variables. In such
cases, isothermal and reversible adiabatic surfaces degenerate into plane
curves such as those shown on the 8 diagram of an ideal gas in Fig. 8-9.




210

Heat and Thermodynamics

ol

Fig. 8-9

v
Two isotherms, at 0 and at O3, between two reversible adiabatics of an ideal gas.
abeda is a Carnot cycle,

For any infinitesimal reversible process of an ideal gas, the first law may be
written

dQ = Gy do + P dvV.

When this equation is applied to the isothermal process b — ¢, the heat trans-
ferred is found to be

R s V,
Q= v PdV = nRf In ;4

Similarly, for the isothermal process @ — d, the heat transferred is

Qs = nRo; In Va,
Sy ill’l (Vc/Vb) -
33 Iﬂ (Vd/Va)

Therefore, Q2

Qs
Since the process @ — b is adiabatic, we may write for any infinitesimal

portion

Cydd = —PdV = —n—};EdV.
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Integrating from a to b, we get

T8 ot 7 Ve
By TRy

Similarly, for the adiabatic process d — ¢,

L 11’_9 In E—"i-
il T 0
s e Vo ol
Therefore, In A In 7. and In TP In 7
and we get, finally,
Q _ ¥
Qs s

Since, however, the Kelvin temperature scale is defined by the same sort of
equation, we have

If # and T refer to any temperature and if 63 and T refer to the triple point
of water,

Oy = T}

Il

273.16°K,

and

L

(8-14)
The Kelvin temperature is therefore numerically equal to the ideal-gas tem-
perature and, in the proper range, may be measured with a gas thermometer.

PROBLEMS

8-1

A gas is contained within a cylinder-piston combination. In the

following five sets of conditions, tell (1) whether dW = P 4} or not and (2)

whether the process is reversible, quasi-static, or irreversible:
(a)

(6)
(e)

There is no external pressure on the piston and no friction between
the piston and the cylinder wall.

There is no external pressure, and friction is small.

The piston is jerked out faster than the average molecular speed.
(d) The friction is adjusted to allow the gas to expand slowly.




